解答:解:(1)∵数列{an}是公差不为0的等差数列,a1=1,且a2,a4,a8成等比数列,∴(1+3d)2=(1+d)(1+7d),解得d=1,或d=0(舍),∴an=1+(n-1)×1=n.(2)设{bn}的公比为q,∵ Sn 2 =15,S2n 2 =255,∴S2n= b1(1-q2n)1-q =510,Sn= b1(1-qn)1-q 30,两式相除,
∴q=2+d a4=a1+3d=2+3d b3=1*q^2=q^2 ∵2a4=b3 ∴2*(2+3d)=q^2=(2+d)^2 即 d^2-2d=0 ∵公差不为0 ∴d=2 ∴q=4 ∴an=a1+(n-1)d=2+2*(n-1)=2n bn=a1*q^(n-1)=4^(n-1)∵an=logα(bn)+β ∴2n=logα[4^(n-1)]+β =(n-1)log...
A3=A1+2d=2+2d A7=A1+6d=2+6d A3^2=A1*A7 (2+2d)^2=2*(2+6d)4+8d+4d^2=4+12d d(d-4)=0 d=0,或d=4 当d=0时,An=A1=2 当d=4时,An=A1+(n-1)d=2+(n-1)*4=4n-2
1) 设公差为d 已知(a4)^2=a2*a5 则(a1+3d)^2=(a1+d)(a1+4d)a1*d+5d^2=0 5d=-a1=10 d=2 故通项公式an=-10+2(n-1)=2n-12 2) bn=a^[(1/2)*(an-12)]=a^n Sn=a+a^2+...+a^n =a*(a^n-1)/(a-1)即为所求 ...
设:{an}的公差是d,d≠0 因此,an=1+(n-1)d,有:a2=1+d、a5=1+4d、a14=1+13d 已知:a2、a5、a14成等比数列 所以:(a5)²=(a2)(a14)(1+4d)²=(1+d)(1+13d)1+8d+16d²=1+14d+13d²3d²-6d=0 d(3d-6)=0 因为:d≠0 因此:解得:d=...
设公差为d 则a3=a1+2d=1+2d a9=a1+8d=1+8d 因为a1,a3,a9成等比数列 所以a3²=a1*a9=a9 ∴(1+2d)²=1+8d ∴d=0或者d=1 又∵d≠0,∴d=1 所以an=a1+(n-1)d=n
解:(1)设公差为d,则d≠0 a2、a4、a8成等比数列,则a4²=a2·a8 (a1+3d)²=(a1+d)·(a1+7d)整理,得d²-a1d=0 a1=1代入,得d²-d=0 d(d-1)=0 d=0(舍去)或d=1 an=a1+(n-1)d=1+1·(n-1)=n 数列{an}的通项公式为an=n (2)an·3^(an)=...
解:(Ⅰ)∵数列{an}是公差不为0的等差数列,a1=2且a3,a5,a8成等比数列.∴a25=a3a8,∴(2+4d)2=(2+2d)(2+7d),解得d=1(d=0舍去).∴an=2+(n-1)×1=n+1.…(6分)(Ⅱ)∵cn=an+1n为奇数3×2an-1n为偶数,∴T2n=(a2+a4+…+a2n)+3(2a1+2a3+…+2a...
解:(Ⅰ)∵数列{an}是公差不为0的等差数列,a1,a2,a4成等比数列,2a5=S3+8,∴(a1+d)2=a1(a1+3d),2(a1+4d)=3a1+3d+8,d≠0,∴a1=d=2,∴an=2n;(Ⅱ)∵数列{bn}的前n项和Tn= 3n an+1 ,∴n=1时,b1 T1 =1;n≥2时,bn=Tn-Tn-1,∴ bn Tn =1- Tn-1...
a3^2=a1*a9 (a1+2d)^2=a1*(a1+8d)(1+2d)^2=(1+8d)4d^2+4d+1=8d+1 4d^2-4d=0 d^2-d=0 d(d-1)=0 d=1或d=0(舍去)an=a1+(n-1)d =1+(n-1)*1 =n bn=2^n sn=2(1-2^n)/(1-2)=2的n+1次方-2 ~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~...