www.elsevier.com/locate/jprocont
On-lineestimationofproductpropertiesforcrudedistillationunits
TirthaChatterjee,DeokiN.Saraf*
ProcessControlLaboratory,DepartmentofChemicalEngineering,IndianInstituteofTechnology,Kanpur208016,India
Received12December2002;receivedinrevisedform23April2003;accepted22May2003
Abstract
Thestringentqualityrequirementofpetroleumproductsinahighlycompetitivemarketmakeson-linemonitoringandcontrolofproductpropertiesessential.Butunfortunatelyfewon-linehardwaresensorsareavailableandthesearealsodifficulttomaintain.Itis,therefore,necessarytodevelop‘softwaresensors’topredictthequalityusingothereasilymeasurablesecondaryvariables.Thisstudypresentsanalgorithmthatusesthecrudetrueboilingpoint(TBP)curveandotherroutinelymeasuredflowrates,tempera-turesandpressuresinthecrudedistillationunit(CDU)topredicttheproductproperties.Themeasuredtopplate,side-stripperdrawplatesandflashzonetemperaturesarecorrectedforhydrocarbonpartialpressurestoobtainequilibriumflashvaporization(EFV)temperatures.TheseproductEFVsareconvertedtoproductTBPsandaresuperimposedonthecrudeTBPcurve.Anassumption,thattheinitialboilingpoint(IBP)ofthenextheavierproductliesverticallybelowthefinalboilingpoint(FBP)oftheproductunderconsiderationandthetwopointsareequidistantfromthecrudeTBPcurve,allowsestimationoftheIBPandFBPtemperaturesofallthedistillateproducts.AstraightlineapproximationoftheproductTBPcurveisusedtoobtainintermediatetemperatures.TheseTBPtemperaturesareconvertedtoproductASTM(AmericanSocietyforTestingMaterials)temperatureswhicharecorrelatedwiththedesiredproductproperties.Severalpropertieshavebeenpredictedusingtheaboveprocedure.TheseincludedensitiesofalltheCDUproducts,FlashPointsforalltheside-streamproducts,ReidVaporPressure(RVP)forthedis-tillate,FreezePointforkerosene,PourPointandtherecoveryforthegasoilsetc.ItispossibletopredictthesepropertiesrepeatedlyeveryminuteaslongassteadystateconditionsprevailintheCDU.Thealgorithmhasbeenappliedoff-linewiththeavailableon-linedatafromtwodifferentoperatingrefineries.Asatisfactorymatchbetweenthepredictedandthemeasuredpropertiesvalidatedthedevelopedsoftsensors.However,extensivetestingisrecommendedbeforetheimplementationofthesesoftsensorsontheactualprocess.#2003ElsevierLtd.Allrightsreserved.
Keywords:Softsensors;Productproperties;Propertiesprediction;Crudedistillation
1.Introduction
Acrudedistillationunit(CDU)isonethroughwhichtheentirecrudeenteringarefinerymustbeprocessed.Becauseofahighlycompetitivemarketandstringentenvironmentallaws,strictqualitycontrolofrefineryproductsisessential.Alltheseproductsarecomplexmixturesofhydrocarbonsanditisnotpossibletocharacterizethemintermsofindividualcomponents.Moreover,itisoftensufficienttocharacterizetheseproductsintermsofcertaingrosspropertiessuchasReidVaporPressureforvolatileproducts,FlashPointforlightdistillates,PourPointforheavydistillatesetc.Thestringentproductqualityrequirementmakesit
*Correspondingauthor.Tel.:+91-512-2597-827;fax:+91-512-2590-104.
E-mailaddress:dnsaraf@iitk.ac.in(D.N.Saraf)0959-1524/03/$-seefrontmatter#2003ElsevierLtd.Allrightsreserved.doi:10.1016/S0959-1524(03)00036-2
necessarythatalltheproductpropertiesshouldbemonitoredandcloselycontrolledcontinuously.Thisrequiresthatthesepropertiesshouldbemeasuredon-linesothattheunitcanbeeffectivelycontrolledthroughafeedbackmechanism.
Unfortunatelynosuitablehardwaresensorsareavailableinthemarketwhichcouldbeusedtomeasurerequiredpropertiesofvariouspetroleumproductson-line.Thelaboratorymeasurementproce-duresaretediousandtimeconsuming,and,hence,itisseldompracticaltomeasurethesepropertiesmoreoftenthanonceinashiftorevenoncein24h.Forthecontrolofatmosphericcrudedistillationunit,itiscustomarytousecutpoints.Horn[1]suggestedtheuseofcut-pointtemperaturesasameasureofproductquality.Thisessentiallymeansthatafractionationpro-ducthavingacertainrangeofboilingpointsisassumedtorepresentthequalityofthatproduct.However,pro-
62T.Chatterjee,D.N.Saraf/JournalofProcessControl14(2004)61–77
Nomenclaturefdlmassflowrateoftheliquiddistillateproduct(kg/h)Fdlmolarflowrateofliquiddistillateproduct(kmol/h)Fdvmolarflowrateofthevapordistillateproduct(kmol/h)FLmolarflowrateofthetotalliquidside-stripperproductsandoverflashthatareinvaporformintheflashzone(kmol/h)Fomolarflowrateoftheoverheadvaporleavingtopofthecolumn(kmol/h)Frefmolarflowrateofthetopplatereflux(kmol/h)Fss,kmolarflowrateofthekthside-stripperliquidproduct(k=1,2,3,4)(kmol/h)Kjvapor-liquiddistributioncoefficientforjthpseudo-component.Lr,(i-1)molarflowrateofthehydrocarbonliquidtothekthside-stripperproductdrawtray(i.e.ithtray)fromthetrayabove(kmol/h)mnumberofpseudo-componentspresentinaproduct.Mjmolecularweightofthejthpseudo-component(kg/kmol)MWmolecularweight(kg/kmol)pfzpartialpressureofthehydrocarbonvaporattheflashzone(psia)pss,kpartialpressureofthehydrocarbonvaporatthekthside-stripperproductdrawtray(k=1,2,3,4)(psia)ptoppartialpressureofthehydrocarbonvaporatthetopofthecolumn(psia)ductqualitywillvarywiththetypeofhydrocarbonspresent—paraffinic,naphthenicetc.and,hence,cut-pointisnotasatisfactorymeasure.Alternatively,attemptshavebeenmadetoestimateproductpropertiesusingmathematicalmodels.Thesemodelsaresodesignedthattheyuseonlyeasilymeasurablesec-ondaryvariablesasinput.Thesemodelsarealsoreferredtoas‘SoftSensors’sincetheyservethesamepurposeashardwaresensors,namelyprovidethepropertieson-line.Pfztotalpressureattheflashzone(psia)Pss,ktotalpressureattheproductdrawtrayofthekthside-stripper(k=1,2,3,4)(psia)Ptoptotalpressureatthetopofthecolumn(psia)(SG)jspecificgravityofthejthpseudo-component.(SG)kspecificgravityofthekthproduct.Skmolarflowrateofthesteaminputtothekthside-stripper(k=1,2,3,4)(kmol/h)SRmolarflowrateofthesteaminputtothebottomofthemaincolumn(kmol/h)STmolarflowrateofthetotalsteaminputtothecolumn(ST=SR+ÆSk)(kmol/h)TASTMASTMtemperature(K)TBnormalboilingpoint(K)TFFlashPointtemperature(K)TFPFreezePointtemperature(K)TPPourPointtemperature(K)TTBPtrueboilingpointtemperature(K)xjmolefractionofthejthpseudo-componentxjkmolefractionofthejthpseudo-componentinthekthproduct.Vjvolumeofthejthcomponentinthemixture(m3)Vss,imolarflowrateofhydrocarbonvaporandsteamleavingtheithside-stripperdrawproducttray(kmol/h)Vmid-volumefractioncumulativemiddlevolumefractionGreekletterskinematicviscosity(cS)Asteadystate,multicomponentdistillationmodel,basedonequilibriumstagerelationsiscommonlyusedtosimulatethecrudedistillationunit(CDU).ForamixtureofCcomponents,analgorithmdevelopedbyBostonandSullivan[2]andlatermodifiedbyRussel[3],hasbeenfoundsuitableformodelingcrudefractiona-tionunitswherealargenumberofstagesaswellasalargenumberofcomponentsarepresentandmostofthecommercialsoftwarepackagesusethisalgorithm.Kumaretal.[4]developedamodelusing(C+3)itera-
T.Chatterjee,D.N.Saraf/JournalofProcessControl14(2004)61–7763
tionvariablessimilartothatbyRusselbutanalter-nativechoiceofindependentvariablesmadetheirmodelmorerobustandefficient.Thismodelwillbereferredtoasthe‘Simulator’inlattersections.
Inordertobeabletousethesteadystatemodelforon-lineapplicationitisnecessarytotunethemodelfrequentlyusingon-lineoperatingdata.Stageeffi-cienciesarecommonlyusedfortuningdistillationmodels.However,crudefractionatorsneedoneaddi-tionaltuningandthatisfeedcompositionwhichisexpressedintermsofatrueboilingpoint(TBP)vsweightorvolumepercentdistilledcurveorsimplyknownasTBPcurve.Daveetal.[5]recentlydescribedaprocedureforon-linetuningofbothstageefficienciesandfeedTBPcurveusingroutinelymeasuredoperatingdata.Stageefficiencytuning,beinganonlinearopti-mizationprocedure,isatimeintensivestepandmaynotallowrepetitionfasterthanevery10min.Aftertuning,themodelequationsaresolvedtoprovideproductTBPtemperaturesanddensities.TheseTBP(orASTM)tem-peraturesanddensitiesareempiricallycorrelatedtovar-iousproductproperties.Thismeansproductpropertiesestimationcannotberepeatedfasterthanevery10–12minwhichissatisfactoryforprocessmonitoringbutunacceptablyslowforfeedbackcontrol.
Thepresentstudyaimstouseanapproximatemodeltopredictproductpropertieseveryminutewhichissui-tableevenforon-linecontroloftheunit.Inthepresentalgorithmanalternativemethodisdevelopedwhich,basedondrawplatetemperaturesofdifferentproductsandotheroperatingconditions,calculatesseveralpro-ductequilibriumflashvaporization(EFV)temperatures(sixinthepresentcase).TheseEFVsarethenconvertedintoTBPtemperatures,whichwhenplacedonthecrudeTBPcurve,allowestimationofsixmoreproductTBPtemperatures.InthismethodtheproductTBPcurvesareapproximatedbystraightlinesforeaseofinter-polation.TheseproductTBPtemperaturesarerelatedtoproductpropertieseitherdirectlyorafterconversiontoASTMtemperatures.Thuswithoutmakingthesimulationoverthemaincolumn,productpropertiesaredeterminedinaneasyandinstantway.
Atypicalcrudedistillationunitconsistsofthemaincol-umn,side-strippercolumnsandpump-aroundsasshowninFig.1.Preheatedfeedenterstheflashzonenearthebottomofthemaincolumnandvariousfractionationproductsarewithdrawnasside-streamswhicharesteamstrippedinthestrippercolumnstoremovethevolatiles.Pump-aroundflowsareusedtoregulatethevaportrafficthroughthecolumnaswellasforheatrecovery.AtypicallistofproductsfromCDUincludesunstabilizednaphthatakenfromthecondenseratthetopofthecolumn(whichissenttoastabilizercolumnforrecoveryofliquefiedpet-roleumgas),specialcutnaphtha(orheavynaphtha),ker-osene,lightgasoil(LGO)andheavygasoil(HGO)assideproductsandlongresidue(LR)asthebottomproduct.
2.CrudeTBPreconciliation
Thetrueboilingpoint(TBP)curveisoneofthemostsignificantcharacteristicfeaturesofthefeedstock.Itdecidestheamountsofvariousfractionationproductsavailablefromthecrudeaswellasthecompositionandpropertiesoftheseproducts.TheaccuracyofpropertypredictionlargelydependsontheaccuracyoftheTBPcurveused.GenerallyTBPdataofpurecrudeisavail-ablefromthecrudeassaywhichmaynotrepresentthecrudebeingprocessedatalatertime.Thesedeviationsmayariseduetovariousreasonssuchasblendingofdif-ferentcrudes,contaminationofonecrudewithanotherinstoragetanksorthecrudebeingproducedfromadifferentsectionofthereservoiratdifferenttimes.
ItisnotpossibletomeasurethecrudeTBPtempera-turesfrequentlysinceittakesseveraldaystoestablishacompletecurveinthelaboratory.Noon-linesensorisavailableforthemeasurementoffeedTBPeither.Thisproblemcanbetackledintwoways.OneisTBPback-calculationwheretheinitialfeedTBPisrectifiedinrealtimeusingsomesecondaryoperatingdatameasuredon-line[5].Thesecondstrategyisusedinoff-linemodeandiscalledTBPreconciliation.
ThefeedTBPreconciliationisausefulmethodtoupdatecrudeTBPfromtimetotime.ItisformulatedasanoptimizationproblemwhereonetriestoadjustthecrudeTBPsuchthatthesimulatorcalculatedproductASTMtemperaturesmatchcloselywiththosemeasuredinthelaboratory.ItisassumedherethatthecrudeTBPcurve,soreconciledusingalargenumberoflaboratorymeasuredASTMtemperaturesofdifferentproducts,willbeclosertotherealfeedbeingprocessedatthattimeascomparedtotheinitialTBPcurveavailablefromthecrudeassay.Thesuccessofthepropertypre-dictiondependslargelyonthesuccessoftheTBPreconciliation.Therefore,itisanintegralpartofthepropertypredictionprocedure.2.1.Problemformulation
Inthelaboratory,usuallyproductASTMsaremea-suredwhichcanbeconvertedtoTBPtemperaturesusinganempiricalcorrelation.UnfortunatelyproductASTMsaremeasuredoccasionallyandtherefore,theTBPrecon-ciliationtechniquecanonlybeusedinoff-linemodewhenevercompleteproductASTMdataareavailable.TheobjectivefunctionisformulatedasaleastsquaredminimizationproblemwherethedifferencebetweenthesimulatorcalculatedproductTBPsandthoseobtainedfromlaboratorymeasuredproductASTMtemperaturesisminimizedsubjecttomodelequationsasconstraints.AnadditionalconstraintarisesfromthefactthatthefeedTBPisamonotonicallyincreasingfunctionofthevolumepercentdistilled.i.e.TBPtemperatureofthe‘i’vol.%distilledisalways
T.Chatterjee,D.N.Saraf/JournalofProcessControl14(2004)61–77
Fig.1.Schematicdiagramofacrudedistillationunit.
greaterthantheTBPtemperatureof‘j’vol.%distilledforalli>j.TheTBPreconciliationproblemcanbemathematicallyexpressedas:
MinimizeI¼
FeedTBP
X
ðProductTBPMeasuredÀProductTBPCalculatedÞ2i
i
theminimizationproblem.NPSOL(Version4.0,1986),
aFORTRANpackage(SoftwareDistributionCenter,StanfordUniversity,USA)wasusedinthepresentstudy.
2.2.Reconciliationstrategy
ThedetailedstrategyforfeedTBPreconciliationisgivenbelow.
Subjectto:modelequationsandTBPj
vol:%ofcrude
fori>j ð1Þ TheproductTBPsincludedintheobjectivefunctionarethoseoftopdistillate,specialcutnaphtha(SCN),kerosene,lightgasoil(LGO)andheavygasoil(HGO).Sequentialquadraticprogramming(SQP)wasusedfor 2.2.1.Selectionofmanipulatedvariables ThemanipulatedvariablesaretrueboilingpointtemperaturesatdifferentvolumepercentofthecrudedistilledthatessentiallyconstitutetheTBPcurve.Inthepresentwork,fifteenTBPtemperaturesareconsideredasmanipulatedvariablestocoverthe0.5–70%(byvolume)range.ThreeTBPpoints,namelytemperaturesat80,90and100%(byvolume),aretakentobecon- T.Chatterjee,D.N.Saraf/JournalofProcessControl14(2004)61–7765 stant(sameasthereportedoriginalTBPvalues)throughouttheoptimizationprocess.Thisisnecessarysincecumulativevol.%ofthetopdistillateandallside-stripperproductsisseldommorethanseventy.TheinitialguessisthefeedTBPdataavailablefromthecrudeassay. 2.2.2.Boundingstrategy Theupperandthelowerboundsarespecifiedforallthemanipulatedvariables.Forunrealisticboundsandadistantinitialguess,theoptimizationprocessmayfailtoproducecorrectresults.Ontheotherhand,thediversityandtheflexibilityoftheoptimizationprocessmaybelostiftheboundsarenarrow.Theupperandthelowerboundsofthefirstmanipulatedvariable(i.e.0.5%,byvolume,TBPtemperature)aretakenasÆ20Cfromtheinitialguess(initialTBPtemperaturefromcrudeassaydata).Forthelastmanipulatedvariable(i.e.70%,byvolume,TBPtemperature)thelowerboundisÀ20Cfromtheinitialguesswhereastheupperboundis+25CfromtheinitialTBPtemperature.Forremain-ingmanipulatedvariables,theupperandthelowerboundsaresetatÆ30CfromtheinitialTBPvalue.Thesenumbersarechosensomewhatarbitrarilybasedonexperience. Iftheboundsarehitthentheyarerelaxedgradually.Forthefirstvariable,lowerandupperboundsarerelaxedfurtherbyhalfofthetotalboundgap(i.e.thedistancebetweeninitiallowerandupperboundsofthefirstvariable)ineitherdirectionwhenthecorrespondingboundishit.Forexample,thetotalboundgapforthefirstmanipulatedvariableis40Cinitiallyandhencethelowerboundisreducedbyafurther20Cifitishit.Forthelastmanipulatedvariabletheupperboundisrelaxedinthesamefashion.Forthelowerboundrelaxation,halfofthegapbetweenthepresentlowerboundofthelastvariableandthecurrentvalueofthepenultimatevariableisconsidered. Therelaxationofboundsofintermediatevariablesisabittrickysincechangingtheboundsofanyvariabledirectlyaffectstheboundsofitsadjacentvariables.Ifthelowerboundofthenthvariableishitthenitislow-eredfurtherbyhalfofthegapbetweenthepresentlowerboundofthenthvariableandthevalueof(nÀ1)thvariable.Ifinthisprocessthelowerboundofthenthvariablebecomeslowerthantheupperboundofthe(nÀ1)thvariablethentheupperboundofthe(nÀ1)thvariableissetequaltonewlyreducedlowerboundofthenthvariable.Fortheupperboundhitofthenthvariabletheboundisfurtherraisedbyhalfofthegapbetweenthe(n+1)thvariablevalueandthepresentupperboundofthenthvariable.Ifinthispro-cessupperboundofthenthvariablebecomesgreaterthanthelowerboundofthe(n+1)thvariablethenthelowerboundofthe(n+1)thvariableissetequaltothenewlyincreasedupperboundofthenthvariable.Hav- ingresetthebounds,theoptimizerisrestarted.Thisboundingstrategyisinbuiltintothecodethatistestedsuccessfullyforagoodnumberofcrudes.Thusbound-ingstrategyensuresthatthereconciledTBPstaysmonotonicallyincreasingwiththevolume%distilledatalltimes. 2.2.3.SelectionofproductTBPpointsintheobjectivefunction Thenumberofparametersincludedintheobjectivefunctionisalsoimportant.Forafixednumberofmanipulatedvariables,thehigherthenumberofpara-metersintheobjectivefunction,thelargerthedegreesoffreedomandthebetteristheoptimizationresult.OntheotherhandthelaboratoryreportsproductASTMs(whichareconvertedtoTBPsusingcorrelation)onlyatsomespecificvolumepercentages.Thislimitsthenum-berofdatapointsavailableforuseintheobjectivefunction.Inanycasethisnumbershouldbegreaterthanthenumberofmanipulatedvariables.Forthepre-sentworkatwenty-onepointschemeisemployed.Forspecialcutnaphtha(SCN),keroseneandlightgasoil(LGO),fivepoints(10–90%,byvolume,atanintervalof20vol.%)aretakenforeach.InthelaboratoryusuallyASTMsofstabilizednaphthaaremeasuredwhereasthesimulatorpredictsthesamefortheunsta-bilizednaphthaorthetopdistillate.Sincethelighterfractionofthetopdistillateisdrawnasthestabilizeroverheadproduct(liquefiedpetroleumgas,LPG),10and30%(byvolume)temperaturesofthesameareexcludedfromtheobjectivefunction.Generallytheheavygasoil(HGO)ASTMsaremeasuredupto50vol.%andhence,onlythreepointsareincludedforHGO.Longresidue(LR)isexcludedsinceitsASTMtemperaturesareseldommeasuredinthelab. AtanyiterationusingcalculatedTBPtemperatures(manipulatedvariables)completefeedTBPcurveisformedbyfittingacubicsplineequationbetweeneverytwoconsecutiveTBPtemperatures.OnceanewfeedTBPcurveiscalculateditisdiscretizedintotwenty-fivepseudo-componentsandbasedonthosepseudo-com-ponentstheCDUsimulatormodelisexecuted.ThemodelpredictedproductTBPsareagainusedtocalcu-latetheobjectivefunction.Iftheobjectivefunctionvalueisbelowtheterminationcriterion(providedbytheuser)andnovariableboundsarehitthentheoptimiza-tionprogramsuccessfullyterminates. 3.ProductASTMtemperaturecalculation Theoperatingconditionsofthecrudedistillationunit(CDU)andthereconciledcrudeTBPcurve(asdetailedabove)areusedtopredicttheproductASTMtempera-tures.Thepresentmethodstartswithvaluesofsixoperatingtemperaturesinthemaincolumn.Thesetem- 66T.Chatterjee,D.N.Saraf/JournalofProcessControl14(2004)61–77 peraturesare(a)distillatedrawtray(or,toptray)tem-perature,(b)flashzonetemperatureand(c)side-streamcolumndrawtemperatures(fourinnumberastherearefourside-strippers).Allthesetemperaturescorrespondtothehydrocarbonproductpartialpressuresinthecol-umnatappropriatelocations.Thetopdistillateiswith-drawninthevaporphasewhereasalltheside-streamproductsarewithdrawnintheliquidphase.Therefore,thetopplatetemperatureactuallydenotestheequili-briumflashvaporization(EFV)dewpointofthedis-tillateatthecorrespondinghydrocarbonpartialpressure.Similarlyalltheside-streamcolumndrawtemperaturesaswellastheflashzonetemperaturedenotetheEFVbubblepointsoftheun-strippedpro-ductsatthecorrespondinghydrocarbonpartialpres-sures.However,theEFVandtheTBPcurvesareavailableonlyatatmosphericpressure;hencethesetemperatureshavetobecorrectedforthepressuredif-ference.Thepartialpressureofthehydrocarbonvaporsiscalculatedfromthetotalpressureontheplateandthemolarflowrateofhydrocarbons. Thepartialpressureofthehydrocarbonvaporsintheoverhead,ptop,isgivenbyWatkins[6]as:ptop¼Ptop½ðFrefþFdlÞ=ðFoþSTÞ ð2Þ whereFrefandFoarethemolarflowratesofthetopplaterefluxandtheoverheadvaporleavingthetopofthecolumnrespectively.STisthemolarflowrateofthetotalsteaminputtothecolumn.Itcomprisesofthesteaminputtothebottomofthemaincolumnaswellastothebottomofalltheside-strippers.Ptopisthetotalpressureatthetopofthecolumn. Thepartialpressureofthehydrocarbonproductvaporsattheflashzone,pfz,isgivenby:pfz¼Pfz½ðFLþFdlÞ=ðFLþFdlþFdvþSRÞ ð3Þ whereFListhemolarflowrateofthetotalliquidside-stripperproductsalongwiththeoverflashwhichareinvaporphaseintheflashzone.Fdvisthemolarflowrateofthevapordistillateproduct.SRisthemolarflowrateofthesteaminputtothebottomofthemaincolumn.Pfzisthetotalpressureattheflashzone. Thepartialpressureofthehydrocarbonvaporsabovetheithtray(fromwhichkthside-stripperstreamiswithdrawn)pss;k¼Pss;kÂpÀss,k,isgivenLr;ðiÀ1ÞÁ=Àby: Lr;ðiÀ1ÞþVss;iÀFss;ðkÀ1ÞÁà ð4ÞwhereLr,(i-1)isthehydrocarbonliquidrefluxflowtotheith(kthside-streamcolumndraw)trayi.e.liquidflowfromthetrayabovethedrawtray.Vss,iisthemolarflowrateofhydrocarbonvaporandsteamleavingtheithtray(side-streamdrawtray).Forexample,ifSCN,SK/ATF,LGOandHGOarefourside-stripperproductsdrawn(inthisorder,fromthetop)fromacolumnthenwhen2nd(i.e.k=2,SK/ATF)side-stripperiscon-sidered,SKdrawplateistheithplateandLr,(i-1)isthe liquidrefluxfromtheplatejustabovetheSKdrawplate.Fss,(k-1)denotestheSCNflowrate,theproductdrawnfromthe1stside-stripper.Differentflows,con-sideredforpartialpressurecalculation,areshowninFig.2.Inthepresentmethodequimolaroverflowisassumedforliquidrefluxcalculationandnointernalvaporizationorcondensationisconsidered.Asimplemassbalanceequationisemployedtocalculatetheliquidreflux.Theliquidrefluxdependsonthetopplaterefluxflowrate,theside-stripperproductsdrawrates,thepump-aroundrefluxflowratesandonthedrawandthereturnpositionsofthepump-aroundrefluxes. Theflowrateofthepreviousside-stripperproduct(Fss,(k-1))isnotincludedinthetotalhydrocarbonvaporsleavingthedrawtray.Thereasonbehindthisisthatproductvapor,Fss,(kÀ1),isnearitscriticaltem-peratureasitleavesthedrawtrayunderconsiderationandhence,itisassumedtohavenoeffectonthepartialpressure[6].Buttheproductvaporswhicharetobewithdrawnfromtheside-stripperabovethepreviousone,i.e.Fss,(kÀ2),arewellabovetheircriticaltempera-tureswhentheyareatthisdrawplatetemperature.Thesevapors,alongwiththesteam,behaveasnon-condensablesandlowertheboilingpointoftheproductinaccordancewiththeDalton’slawofpartialpressures.Tocalculatethehydrocarbonpartialpressureatthefirstside-stripperdrawtray,thetopdistillatemustbesub-tractedfromthetotalhydrocarbonvaporsleavingthedrawtray.ThetraytemperaturesmeasuredintheplantarecorrectedtoatmosphericpressureusingClasiusClayperonequation.dðlnPÞ=dð1=TÞ¼K ð5Þ whereKisaconstantforthehydrocarbonstreamunderconsideration.ThevaporpressureofthehydrocarbonstreamataparticulartemperatureiscalculatedusingananalyticalmodeldevelopedbyLeeandKesler[7]. Thepressure-correctedEFVtemperaturesarethenconvertedtoTBPtemperaturesusingthecorrelationdevelopedbyRiaziandDaubert[8].ThesixTBPtem-peraturescorrespondtodistillatefinalboilingpoint(FBP),SCNinitialboilingpoint(IBP),keroseneIBP,LGOIBP,HGOIBPandflashzonetemperature.Thesetemperatures,whensuperimposedonthefeedTBPcurveattheirrespectivecumulativevolumepercentdis-tilled,formthecutpointsofthedifferentproducts.FeedTBPtemperaturesatcumulativevolumepercentofdifferentproductsareobtainedfromthecrudeTBPcurve.Thesetemperaturesaretermedas‘Midtempera-tures’(seeMinFig.3).ItisassumedthatatthecutpointsthefeedTBPtemperaturesequallydividetheTBPoverlaps.i.e.thedifferencebetweentheheavierproduct’sIBPandthemidtemperature(atthecumula-tivevolumepercentdistilledofthelighterproduct)isequaltothedifferencebetweenthemidtemperatureandthelighterproduct’sFBP.Forexample,thedifference T.Chatterjee,D.N.Saraf/JournalofProcessControl14(2004)61–7767 Fig.2.Sectionofdistillationcolumn(alongwithaside-stripper)indicatingdifferentflows. betweenLGOIBPandthemidtemperaturecalculatedatthecumulativevolumepercentkerosenedistilledisequaltothedifferencebetweenthatsamemidtempera-tureandkeroseneFBP. Usingtheabovemethodfinalboilingpointsofallthesidestripperproductsarecalculated.Thesetempera-turesarereferredtoasconvertedproductIBPorFBPinEq.(6)(CorC0inFig.3).TocalculatetheFBPofHGO,thedifferencebetweentheflashzonetemperatureandthemidtemperaturecalculatedatthecumulativevolumepercentofHGOisused.Around2%(byvolume)ofcrudeisusuallycollectedasliquefiedpetroleumgas(LPG)fromthetopofthestabilizer.Sincethelaboratorygenerallyreportsthepropertiesofthestabilizednaphtha,thefeedTBPtem-peratureat2%(byvolume)distilledistakenastheIBPofthisproduct.ThususingthefeedTBPcurveandthesixTBPtemperaturescalculatedfromtheoperatingconditions,sixotherTBPtemperaturesareobtained.Knowingboth,theIBPandtheFBPofaproduct,astraightlineapproximationismadetorepresenttheproductTBPcurve.But,sincetheproductTBPsaswell Fig.3.Agraphicaldescriptionofthepresentmethod. 68T.Chatterjee,D.N.Saraf/JournalofProcessControl14(2004)61–77 astheproductASTMshavean‘S’shapedcurve,thestraightlinejoiningofIBPandFBPgivesapoorapproximationoftheintermediatevolumepercentpro-ductTBPs.ThesetwopointsareshiftedverticallybytakingaparticularratiobetweentheproductTBP(i.e.IBPorFBP)andthecorrespondingmidtemperature.Tobeprecise,IBPsareshiftedupwardswhereasFBPsareshifteddownwards(bothtowardsthecrudeTBPcurve).ThisisperformedtoprovideabetterlinearapproximationoftheproductTBPs.ExperimentallymeasuredproductASTMtemperaturesareusedtodeterminethisratio(shiftingconstant).Astraightlineisfittedintheleastsquaredsensethrough10–90%(byvolume)ASTMtemperaturesafterconvertingthesetocorrespondingTBPtemperatures.Thisstraightlineisthenextrapolatedtocover0–100vol.%range.TheseextrapolatedIBPorFBPrepresenttheterminaltem-peraturesoftheproductTBPcurveifitwereastraightline(EE0inFig.3).Theshiftingconstant‘x’iscalcu-latedasfollows: x¼ðExtrapolatedproductIBPorFBP-MidtemperatureÞðConvertedproductIBPorFBP-MidtemperatureÞ¼EMCMð6ÞTheseshiftingconstantsarecalculatedforalltheproductIBPsandFBPsandareusedtoestimateline-arizedproductTBPsfromoperatingdata.Thesecon-stantsareupdatedasandwhenlaboratorymeasuredproductASTMsareavailable.Fromthelinearrelation10,30,50,70and90%(byvolume)productTBPtem-peraturesareextractedandsubsequentlyconvertedintocorrespondingproductASTMtemperaturesusingDaubert’s[9]correlation. 4.Propertypredictionpackage Themainaimofthepresentstudyistodevelopamethodologyformakingon-lineestimationofthepro-ductpropertiesrepetitivelyandatshorttimeintervalsoftheorderofaboutoneminute.ThisinformationcanbeusedinfeedbacklooptocontroltheoperationoftheCDUforbetterproductqualitycontrol.Themoreinstantaneousthepropertyprediction,thequickerandmoreeffectiveisthecontrolsystem. Inthissection,wepresentcorrelationswhichareusedtoestimatesiximportantpropertiesofthepetroleumpro-ductsnamelyspecificgravity,ReidVaporPressure,FlashPoint,PourPoint,FreezePointandRecoveryat366C.4.1.Specificgravity Onecommonlyusedmethodofproductspecificgravityestimationismodel-based.Knowingthepro-ductcompositionintermsofthepseudo-components,alinearmixingruleisusedtocalculateproductspecificgravityas: ðSGÞX k¼ xjkðSGÞj j¼1;2;::::::::;mð7Þ j where(SG)kisthespecificgravityofthekthproduct,misthetotalnumberofpseudo-componentsandxjkisthemolefractionofthejthpseudo-componentinthekthproduct.(SG)jisthespecificgravityofthejthpseudo-component. Thepresentmethoddeterminesspecificgravityofthekthproductusingamodificationofanempiricalcorre-lationreportedbyRiaziandDaubert[8].Theseauthorsexpressedspecificgravityasafunctionof10and50%(byvolume)distilledtemperatures.Itwasobservedthatthepredictionsofproductspecificgravitiesusingtheabovecorrelationweresatisfactoryforsomecrudesbutdeviatedsignificantlyfromthemeasuredvaluesforsomeothers.Thecrudespecificgravitywas,therefore,includedinthecorrelationasfollows: ðSGÞk¼0:08571ðTTBP10%Þ0k:1255ðTTBP50%Þ0k :20862 ðSGcrudeÞsð8Þ where‘s’isaproductspecificconstantandboththeTBPtemperaturesareinR.Inthepresentstudythevalueof‘s’wascalculatedusingregressiontechniquewhichinvolveddataforsevendifferenttypesofcrudes.4.2.Reidvaporpressure(RVP) Reidvaporpressure(RVP)denotesthevapor-lockingtendencyofavolatilematerialandisdefinedasthepressureamaterialdevelopswithinaclosedcontainerat37.8C(100F).Thispropertyisespeciallyimportantforlightpetroleumproducts,namelytopdistillateandSCN.Inthepresentstudy,asimplemethodproposedbyDutt[10]wasusedtoestimateRVPwhichisgivenby:logP¼6:8736À 967:27þ2:TB Tþð244:53À0:2977TBÞ ð9Þ whereTBisthenormalboilingpoint(NBP)ofthepro-ductinC.InthepresentstudyTBP50%(byvolume)temperatureisusedasNBP.Eq.(9)atT=37.8Cpre-dictstheRVPoftheproductinmmHg.4.3.Flashpoint FlashPointisthetemperatureatwhichthevaporcol-lectedoverapetroleumfractionwillmomentarilyflashorigniteinthepresenceofaflame.Itindicatestherelativeamountoflowboilingmaterialpresentintheoil. Nelson[11]firstproposedthefollowingcorrelationfordistilledfractions:TF¼0:tÀ100 ð10Þ whereTFistheFlashPointandtisthe0–10%boilingrangeinF. T.Chatterjee,D.N.Saraf/JournalofProcessControl14(2004)61–7769 Butleretal.[12]proposedarelationshipbetweenFlashPointandnormalboilingpoint,TB,ofaproductwhichwaslatermodifiedbyLenoir[13]toincludevapor-liquiddistributioncoefficientas:ÆxjMjKj¼1:03; j¼1;2::::::::::::;m ð11Þ wherexjisthemolefraction,MjisthemolecularweightandKjisthevaporliquid-distributioncoefficientofthejthcomponent.SinceKjisafunctionoftemperature,thetemperatureatwhichEq.(11)issatisfiedistheFlashPointoftheproduct. RiaziandDaubert[14]reportedacorrelationwhichrelatesFlashPointwith10%(byvolume)ASTMtem-peratureofthepetroleumproductsasfollows:1T¼À0:014568þ2:84947þ1:903FTASTM10% Â10À3lnTASTM 10% ð12Þ wherebothTFandASTM10%temperatureareinR.ThiscorrelationpredictsFlashPointforSCNquitesatisfactorilybutfailsforheavierproductssuchasker-osene,LGOorHGO.FortheheavierproductsanothercorrelationproposedbyRiaziandDaubert[14]wasmodifiedandconstantswereregressedafreshtoyield:1 T¼0:076204F À 4:17015 TÀ0:01043lnðTASTM10% ASTM10%Þ ð13Þ þ0:000257lnðSGÞ whereFlashPointand10%ASTMtemperaturebothareinK.Thisregressedcorrelationisusedintheprop-ertypackagetopredictFlashPointsoftheaboveproducts.4.4.PourPoint PourPointisameasureoftherelativeamountofwaxinoil.ThetestdoesnotprovidetheactualamountofwaxpresentbutitindicatesthatwaxymaterialswhichmeltabovethePourPointtemperature,areabsentintheoil.RiaziandDaubertcorrelationforPourPointÀ[14]T0PÁdevelopedanempiricalwhichwasmodifiedbyChakrabarti[15]asfollows: T0SGÞ P¼7:3243ðSGÞ11:2982ðMWÞðÀ0:8587þ1:1670 T3:3549À3:1975ð14Þ ASTM90% SG TASTM 0:1046 10% wherethepredictedPourPointaswellasinputASTMtemperaturesareinK.MWrepresentstheaveragemolecularweightoftheproduct.Theconstantswereevaluatedbyregressingtheexperimentaldata. Gangulyetal.[16]reportedtheinclusionofinitial andfinalcumulativevolumecutoftheproductintheirArtificialNeuralNetwork(ANN)-basedPourPointpredictionmethod.Thisinclusionaccountsfortheeffectofwaxdistributioninthecrude.Inthepresentstudyinsteadoftwocumulativevolumesonlyonevolumecut,mid-volumefractionoftheproduct,isused.KeepingtheformandallregressionconstantsofEq.(14)unchangedthenewparameterisintroducedasfollows; TP¼ÀaþðVmid-volumefractionÞHÁ T0P ð15ÞwhereT0PisthePourPointcalculatedusingEq.(14). RegressingEq.(15)separatelyforLGOandHGOusinglabmeasuredpourpointdatawegetthefollowingequations: TP¼À0:09236þðVmid-volumefractionÞ0:140535ÁT0P; forLGOð16Þ TP¼À 0:03931þðVmid-volumefraction Þ0:1747ÁT0 P;forHGOð17Þ 4.5.FreezePoint FreezePointisthetemperatureatwhichaliquidgetssolidified.ItisoneofthemostimportantpropertiesforAviationTurbineFuel(ATF).TheRiazi-Daubertcorrelation[14]forthePourPointwasfoundtopredicttheFreezePointquitesatisfactorilyinthepresentstudy.Theequationisasfollows: TFP¼234:85ðSGÞ2:970566ðMWÞð0:61235À0:473575 SGÞ ð100Þð0:310331À0:32834 SGÞ ð18Þ wheretheFreezePointisexpressedin0Rand100isthe kinematicviscosityat100FincS.Theabovecorre-lationisapplicableforproductswithmolecularweightsrangingfrom140to800. ThekinematicviscosityterminEq.(18)iscalculatedusingamodelproposedbyDutt[17].Itisgivenby:ln¼À3:0171þ 442:78À1:52TBtþð239:0À0:19TBÞ ð19Þ whereTBisthenormalboilingpoint(NBP)andissub-stitutedby50%(byvolume)TBPtemperatureinC,tisthetemperatureinCatwhichisdetermined.4.6.Recoveryat366C Recoveryisthevolumepercentofaproductevapo-ratedupto366CwhenitisdistilledinasimpleASTMdistillationstill.Recoveryisgenerallymeasuredforheavierfractions,namelyHGOandLR.Itrepresents 70T.Chatterjee,D.N.Saraf/JournalofProcessControl14(2004)61–77 theamountofvolatilematerialpresentintheheavierfractions. ThepresentpropertypackageusesanempiricalcorrelationforrecoveryestimationdevelopedbyChak-rabarti[15].Thecorrelationexpressesrecoveryasafunctionofproductspecificgravity,molecularweight,ASTM10%(byvolume)temperatureandkinematicviscosityat100F.Thecorrelationis:Recovery¼391:092ðSGÞ18:437ðMWÞð49:386À58:59 SGÞ ðTASTM 10%Þ ð47:925SGÀ40:059Þ ðð20Þ 100ÞÀ0:275 Tocalculatekinematicviscosity,useismadeofEq.(19).ASTM10%temperatureinKisused.Eq.(20)givesRecoveryinvolumepercent. 5.Resultsanddiscussion Themethodologyofpropertypredictionusingrouti-nelymeasuredtemperatures,pressuresandflowrates;asdiscussedearlier,wastestedoff-lineusingon-lineoper-atingdatafromtwodifferentunitsforsevendifferentcrudes.Forunit1dataforsixdifferentcrudetypesweretestedandasinglecrudetypedatawastestedforunit2.ThepredictedproductASTMsusingthepresentmeth-odologyarepresentedalongwiththelaboratorymea-suredvaluesforcomparison.Acomparisonbetweenthemodelpredictedandlabreportedpetroleumproductpropertiesisalsopresented.5.1.Propertiesprediction Proposedspecificgravitycorrelation[Eq.(8)]isline-arlyregressedforallthepetroleumproductsusingdif-ferenttypesofcrudes.Theproductspecificregressionconstant‘s’isreportedinTable1.Fig.4showsaparityplotbetweenpredictedandexperimentallymeasuredspecificgravities.Asseeninthisfigurethedataarescatteredaroundthe45line.Table2showsthatinclu-sionofcrudespecificgravityinEq.(8)hasledtoafivefolddecreaseinaverageabsolutedeviationbetweenthepredictedandthemeasuredvalue, AparityplotbetweenthepredictedvaluesoftheFlashPointsusingEq.(13)andtheexperimentaldataisshowninFig.5.AlthoughEq.(13)predictedtheFlash Table1 RegressionconstantsforspecificgravitycorrelationProductsDistillate0.332983SCN0.171457Kerosene0.097985LGO0.047446HGO 0.120141 Pointsreasonablyaccuratelyandbetterthanotheravailablecorrelations(asshowninTable2),onlyafewexperimentaldatawereavailableforregression,parti-cularlyforHGO,whichmakesthiscorrelationlessreli-ablefortheheavierproduct. ThoughtheproposedcorrelationforthePourPointsworksbetterthanotherreportedcorrelations(seeTable2)forthelimitedamountofdataavailableforregression,thereisaneedtogeneralizethecorrelationwithmorelaboratorydata.5.2.Casestudies Thealgorithmisstudiedwithseveraldatasetsinvol-vingsevendifferenttypesofcrudesforwhichplantoperatingdataaswellaslaboratorymeasuredproper-tieswereavailable.ThesecrudesarefromKuwait,Dubai,IranMix,ZeitBay,QuaIboe,MumbaiHighandPersianGulf.Amongtheseseventypesofcrudesthefirstsixweretestedwiththeoperatingdataavailablefromunit1andtheseventhwastestedforoperatingdatafromunit2.TheresultsforonlyKuwaitandPersianGulfcrudesarepresentedhere. Thedatasetsareclassifiedintotwocategories.Oneis‘trainingset’andtheotheris‘testset’.TheTrainingsetsarethoseforwhichthedetailedproductpropertiesandtheproductASTMtemperatureprofiles,measuredinthelaboratory,wereusedtodevelopthismethodology.ThesesetswereemployedtoreconcilethecrudeTBPaswellastogeneratetheproductIBPandFBPshiftingconstants.Foraparticulartypeofcrude,thereconciledcrudeTBPandtheshiftingconstants,generatedfromthetrainingsets,wereusedtopredicttheproductprop-ertiesforthetestsets. Figs.6and7showthereconciledcrudeTBPcurvesalongwiththeinitiallyavailablecurvesforKuwaitandPersianGulfcrudesrespectively.Tables3and4showthatevenminorchangesinthecrudeTBP(asshowninFigs.6and7)leadtosignificantlyimprovedproductTBPprediction.ThenusingthereconciledfeedTBP,measuredproductASTMsandplantoperatingcondi-tions,theshiftingconstantsweregenerated.Usingtheseshiftingconstants,theproductASTMswerecalculatedwhichwereusedintheestimationofproductproperties.FortestsetsusingalreadyavailablereconciledfeedTBPandtheshiftingconstantsfromtrainingsets,pro-ductASTMswerecalculatedforgivenoperatingdata.Thentheproductpropertieswerepredictedusingprop-ertypredictionpackage.OperatingdataforKuwaitcrude,processedinunit1,aregiveninTable5whereasTable6containssimilarinformationforPersianGulfcrudeprocessedinunit2.Datasets1and4aretrainingsetsandtherestaretestsets. Tables7–10showthecomputationresults.Thepre-dictedproductASTMtemperaturesforKuwaitandPersianGulfcrudesareshowninTables7and9 T.Chatterjee,D.N.Saraf/JournalofProcessControl14(2004)61–7771 Fig.4.Comparisonofpredictedspecificgravitywiththeexperimentaldata. Table2 EvaluatingproductpropertiespredictioncorrelationsProperties Range No.ofdatapointsusedCorrelations Specificgravity FlashPoint PourPoint À12.0–39.0C 15 Absolutedeviation(C)Average Maximum 0.6826–0.2833.0–134.0C 6296 AbsolutedeviationAbsolutedeviation(C)Average Maximum0.0373 0.0435–– Average1.575–9.155– Maximum7.9–35.7– Present Riazi-Daubert[8]Riazi-Daubert[14]Chakrabarti[15]0.00320.0169––2.2068.8–– 8.5224.114.8827.6 Absolutedeviation¼Predictedproperty-experimentalproperty.Averagedeviation¼ðSabsolutedeviationÞ=ðno:ofdatapointsÞ. Fig.5.ComparisonofpredictedFlashPointswiththeexperimentaldata. 72T.Chatterjee,D.N.Saraf/JournalofProcessControl14(2004)61–77 Fig.6.ReconciledandinitialfeedTBPsforKuwaitcrude. Fig.7.ReconciledandinitialfeedTBPsforPersianGulfcrude. respectively.ThelaboratorymeasuredproductASTMtemperatures,whereveravailable,arealsoincludedinthetablesforcomparison.ThecomputedproductpropertiesarecomparedwiththelaboratorymeasuredvaluesinTables8and10.Forboththecrudes,whilemostofthelaboratorymeasuredvaluesofpropertiesareavailablefortrainingsets,onlylimiteddataarereportedfortestsets. Fortrainingsets,theproductASTMtemperaturematchwiththelaboratoryreporteddataisgoodwhichistobeexpectedinviewofthecrudeTBPcurvesbeingreconciledusinglaboratorymeasuredproductASTMtemperatures.InmostofthecasestheaveragedeviationbetweentheexperimentalandthepredicteddataisÆ1C.ButafewlargerdeviationsareencounteredforHGOASTMtemperatures.Thereasonbehindthismightbethatinmostofthecasesarelativelysmallamountofproduct(below10%,byvolume,oftotalfeed)isdrawnasHGO.Moreover,thepartofthecrudeTBPthatcorrespondstoHGOisquitesteepandasaresult,themiddleportionofthe‘S’shapedHGOASTMcurve(whichisassumedtobelinear)isofrela-tivelysmallwidth.ForthisreasonourapproximationoflinearizationoftheproductTBPcurvemayfailforHGOresultinginerroneousestimationofintermediateTBP(orASTM)temperatures.AschemewithmultiplestraightlinesinsteadofasinglestraightlinemayimprovethetemperatureprofilepredictionforHGO.Forthetestsets,theaveragedeviationbetweentheexperimentalandthepredictedASTMtemperaturesisintherangeofÆ5C.Higheraveragedeviationfortestsetscomparedtotrainingsetsmaybeexpectedsinceanymeasurementerrorsinthetrainingsetarelikelytoleadtohigherdeviationsinpredictions.AÆ5CdeviationcanberegardedassatisfactoryassomeexperimentalerrorsarepresentinthemeasurementofproductASTMtemperaturesforthetestsetstoo. Thecrudecharacteristicsmaychangewithtimebecauseofcontaminationwithothercrudesinlargestoragetanksorforavarietyofotherreasons.Afre- T.Chatterjee,D.N.Saraf/JournalofProcessControl14(2004)61–7773 Table3 ProductTBPtemperaturesbeforeandafterfeedTBPreconciliationandtheircomparisonwiththemeasuredvaluesforKuwaitcrude(dataset1)Objectivefunctionparameters ProductASTM(measured)(C) ProductTBPa(measured)(K) CalculatedproductTBP(K)BeforereconciliationofcrudeTBP SCN10vol.%SCN30vol.%SCN50vol.%SCN70vol.%SCN90vol.%Kero10vol.%Kero30vol.%Kero50vol.%Kero70vol.%Kero90vol.%LGO10vol.%LGO30vol.%LGO50vol.%LGO70vol.%LGO90vol.%HGO10vol.%HGO30vol.%HGO50vol.% Valueoftheobjectivefunction aAfterreconciliationofcrudeTBP 119.00124.00127.00131.00136.00165.00175.00187.00203.00228.00236.002.00281.00297.00322.00310.00346.00365.00 373.48375.96382.26390.20388.97392.81400.68396.61400.28408.29404.25408.91417.40417.73418.30421.47411.92415.99442.58436.03438.87461.457.55459.62482.81480.23481.39512.39509.59508.97496.44497.21497.00534.57531.66531.38558.06555.46554.18580.48578.82577.18609.610.53608.83575.58576.20572.06619.92624.82619.814.25653.957.09 346.102205.72 PlantmeasuredproductASTMsareconvertedtoproductTBPsusingRiazi–Daubertcorrelation[8]. Table4 ProductTBPtemperaturesbeforeandafterfeedTBPreconciliationandtheircomparisonwiththemeasuredvaluesforPersianGulfcrude(dataset4) Objectivefunctionparameters ProductASTM(measured)(C) ProductTBPa(measured)(K) CalculatedproductTBP(K)BeforereconciliationofcrudeTBP SCN10vol.%SCN30vol.%SCN50vol.%SCN70vol.%SCN90vol.%Kero10vol.%Kero30vol.%Kero50vol.%Kero70vol.%Kero90vol.%LGO10vol.%LGO30vol.%LGO50vol.%LGO70vol.%LGO90vol.%HGO10vol.%HGO30vol.%HGO50vol.% Valueoftheobjectivefunction aAfterreconciliationofcrudeTBP384.88402.28409.20417.34430.68420.12442.74462.41474.744.58484.02518.48552.05578.78624.20570.35616.467.97423.43 126.50132.50137.00141.50148.00165.00175.00184.50195.50215.00222.00253.00272.50294.00324.00315.50346.50362.00387.44402.41411.40419.21430.03422.75444.35460.70476.95501.75475.13523.70552.78580.93615.27574.36622.367.19 379.62396.305.73415.09430.13419.58440.31455.09470.31492.290.16522.14547.54574.78613.42556.56595.76619.782411.63 PlantmeasuredproductASTMsareconvertedtoproductTBPsusingDaubertcorrelation[9]. quentcrudeTBPreconciliationandtheshiftingcon-stantsgenerationcanhelpinimprovingthepredictionofproductASTMs.Thequestionthatarisesishowoftendoweneedtoundertakethisretrainingexercise?Thereisnodefiniteanswerbutthealgorithmhasbeentested(usingthereconciledTBPandtheshiftingcon-stantsascalculatedusingthetrainingset)withthedatacollectedoveraperiodofseveraldays.Forexample,thegapbetweenobservationtimeofset1(trainingset)andset2(testset)wasover15days.Similarlythegap 74T.Chatterjee,D.N.Saraf/JournalofProcessControl14(2004)61–77 Table5 Operatingconditionsfordatasets1–3(Kuwaitcrude)Inputs Feedflowrate(MT/day)Refluxflowrate(MT/day)TOPPAflowrate(MT/day)KeroPAflowrate(MT/day)LGOPAflowrate(MT/day)HGOPAflowrate(MT/day) Un-stabilizednaphthaflowrate(MT/day)SCNflowrate(MT/day)Keroflowrate(MT/day)LGOflowrate(MT/day)HGOflowrate(MT/day)Bottomsteam(MT/day)SCNSSsteam(MT/day)KeroSSsteam(MT/day)LGOSSsteam(MT/day)HGOSSsteam(MT/day) Heateroutlettemperature(C)Flashzonetemperature(C)Refluxtemperature(C)Steamtemperature(C)Topplatetemperature(C)SCNdrawtemperature(C)Kerodrawtemperature(C)LGOdrawtemperature(C)HGOdrawtemperature(C) Columntoppressure(kg/cm2,gage)Flashzonepressure(kg/cm2,gage) Set1(Training)9030.00865.001446.004725.001200.003800.001200.00206.001300.001285.00767.0052.007.0058.000.000.00374.00369.3036.70330.00106.00153.70195.80269.10337.902.482.70 Set2(Test)7976.901017.00984.004500.00901.003465.001005.00279.871225.00986.007.0050.006.0060.000.000.00375.60369.8043.70330.00106.00143.50197.80269.70337.602.232.78 Set3(Test)7869.501005.001001.004400.00925.003408.001105.00214.791201.001013.00701.0045.005.0060.000.000.00373.20366.5040.90330.00104.20146.70192.20265.20334.302.262.78 Table6 Operatingconditionsfordatasets4–6(PersianGulfcrude)Inputs Feedflowrate(m3/h)Refluxflowrate(m3/h)HNPAflowrate(m3/h)KeroPAflowrate(m3/h)LGOPAflowrate(m3/h) Un-stabilizednaphthaflowrate(m3/h)HNflowrate(m3/h)Keroflowrate(m3/h)LGOflowrate(m3/h)HGOflowrate(m3/h)Bottomsteam(MT/h)HNSSsteam(MT/h)KeroSSsteam(MT/h)LGOSSsteam(MT/h)HGOSSsteam(MT/h) Heateroutlettemperature(C)Refluxtemperature(C)Topplatetemperature(C)SCNdrawtemperature(C)Kerodrawtemperature(C)LGOdrawtemperature(C)HGOdrawtemperature(C) Columntoppressure(kg/cm2,gage)Flashzonepressure(kg/cm2,gage) Set4(Training)1080.20242.70499.70424.30400.70199.2055.00128.00229.8032.406.501.102.000.550.60369.3043.40143.80154.40186.70270.90341.402.502.80 Set5(Test)1109.30246.10449.50424.40399.90203.5054.80135.00234.9041.606.501.102.240.550.61368.0043.60144.20154.40196.90272.90342.702.502.80 Set6(Test)1119.40253.40451.20424.90400.40199.1055.00134.80235.0035.006.501.102.100.550.61367.8042.00144.40153.40196.10272.00339.802.502.80 T.Chatterjee,D.N.Saraf/JournalofProcessControl14(2004)61–77 Table7 ComparisonofmodelpredictedproductASTMswithmeasuredvaluesfordatasets1–3(Kuwaitcrude) Set1(training) ProductSRN/UN Vol.%10305070901030507090103050709010305070901030507090 Lab63.072.085.098.0114.0119.0124.0127.0131.0136.0165.0175.0187.0203.0228.0236.02.0281.0297.0322.0310.0346.0365.0N.R.N.R. Model62.97284.398.7113.5119.5122.2126.4131.4136.11.3175.11.5206.2223.7241.4256.8276.6299.3323.8314.1338.8369403.3441.6 Set2(test)LabN.R.N.R.N.R.N.R.N.R.114.0N.R.123.0N.R.132.0N.R.N.R.N.R.N.R.N.R.N.R.N.R.N.R.N.R.N.R.N.R.N.R.N.R.N.R.N.R. Model61.870.381.995.4109.3116.1119.5124.7130.8136.7165.4177.8194.1212.8232.6240.3255.4274.8297.1321316.3342.6374.10.9451.6 Set3(test)LabN.R.N.R.N.R.N.R.N.R.116.0N.R.120.0N.R.133.0N.R.N.R.N.R.N.R.N.R.N.R.N.R.N.R.N.R.N.R.N.R.N.R.N.R.N.R.N.R. 75 Model.274.187.5102.9119.0122.3125.4130.2135.9141.4167.1180.0197.0216.5237.2241.4258.5280.3305.3332.4314.5344.3379.9420.2465.9 SCN/HN ATF/SK LGO HGO N.R.:Notreported. Table8 Comparisonofmodelpredictedproductpropertieswithmeasuredvaluesfordatasets1–3(Kuwaitcrude) Set1(training) PropertiesSRN/UN SpecificgravityRVP(psi)SCN/HN SpecificgravityFlashPoint(C)ATF/SK SpecificgravityFlashPoint(C)FreezePoint(C)LGO SpecificgravityFlashPoint(C)PourPoint(C)HGO SpecificgravityFlashPoint(C)PourPoint(C)%RecoveryN.R.:Notreported. Lab 0.69046.50.7433N.R.0.782742.5À56.00.832763.0<00.88>10518.054.0 Model0.69936.5 Set2(test)LabN.R.N.R. Model Set3(test)Lab Model0.70085.8 0.6982N.R.7.1N.R.0.74830.73859.2N.R.0.792940.8À54.10.844166.6À8.6 0.783141.5À54.0N.R.N.R.N.R. 0.75020.737711.9N.R.0.791240.7À55.10.844967.1À8.4 0.78540.5À53.5N.R.N.R.N.R. 0.752214.20.794341.2À53.40.84667.1À4.90.8834115.519.851.0 0.88020.8767115.3N.R.14.915.054.8N.R.0.88230.8753 117.1N.R.16.515.053.0N.R. 76T.Chatterjee,D.N.Saraf/JournalofProcessControl14(2004)61–77 Table9 ComparisonofmodelpredictedproductASTMswithmeasuredvaluesfordatasets4–6(PersianGulfcrude) Set4(training) ProductSRN/UN Vol.%10305070901030507090103050709010305070901030507090 Lab53.559.567.578.599.0126.5132.5137.0141.5148.0165.0175.0184.5195.5215.0222.0253.0272.5294.0324.0315.5346.5362.0374.0388.0 Model Set5(test)Lab Model Set6(test)Lab Model52.058.968.579.791.1122.1125.3130.2136.0141.5161.8170.0181.2194.2207.6224.9243.0265.7291.8320.1319.2331.6347.9366.6386.5 SCN/HN FAT/SK LGO HGO 52.954.0 60.260.570.469.582.381.594.4104.5126.4125.0130.0133.0135.4138.0141.8143.5148.0148.0165.2165.5173.6176.0185.1185.0198.4196.5212.2217.0227.3224.0246.0255.5269.4275.0296.3296.5325.6328.0323.9317.5336.9350.0353.9369.5373.5376.0394.3391.052.754.5 60.060.570.168.081.879.093.8102.0125.1128.0128.4133.5133.4138.0139.4142.0145.1148.5165.2167.0173.6176.5185.1185.5198.4197.0212.2217.0228.0221.0246.4251.0269.7269.5296.2290.5325.3321.0325.5317.5339.6348.0357.93.5378.9376.5401.4392.5 Table10 Comparisonofmodelpredictedproductpropertieswithmeasuredvaluesfordatasets4–6(PersianGulfcrude) Set4(training) PropertiesSRN/UN SpecificgravityRVP(KPa)SCN/HN SpecificgravityFlashPoint(C)ATF/SK SpecificgravityFlashPoint(C)FreezePoint(C)LGO SpecificgravityFlashPoint(C)PourPoint(C)HGO SpecificgravityFlashPoint(C)PourPoint(C)%RecoveryN.R.:Notreported. Lab0.6859.00.7576N.R.0.791340.0À61.00.840560.0À6.00.8785114.0N.R.56.5 Model0.691960.50.755617.40.7900.9À60.3 Set5(test)Lab0.685465.70.757N.R. Model Set6(test)Lab Model 0.69170.68340.67161.258.25.90.754616.4 0.7559N.R.0.7539.5À59.00.83N.R.<À18.0 0.752614.00.788440.3À61.40.837559.3À7.90.8761120.06.967.4 0.79120.790639.540.9À58.0À60.3 0.8395 60.7À6.0 0.83920.841360.462.0À5.9À6.00.8788124.08.865.7 0.8795121.0N.R.52.5 0.88020.8873125.4122.010.218.0.552.0 betweenset4(trainingset)andset6(testset)wasabout 3days.Thepredictioncapabilityofthealgorithmwastestedforatimeintervaloftwoweeksbutonlywithalimitednumberofdatasets.ItisdesirablethatthecrudeTBPshouldbereconciledandthenewshiftingcon-stantsbegeneratedasfrequentlyaspossible. SuccessofthepropertypredictionpackagelargelydependsonthesuccessofproductASTMsprediction T.Chatterjee,D.N.Saraf/JournalofProcessControl14(2004)61–7777 sinceallthepropertiesarecorrelatedwiththeproductASTMtemperatures.Theproductspecificgravitypre-dictionworkswellandcouldpredictuptotwodecimalplacessuccessfullyinmostofthecases.Reidvaporpressure(RVP)predictionmatchessatisfactorilywiththeexperimentaldataformostofthecases.Themar-ginaldeviationmaybeduetoexperimentalerrors. ThemodelpredictedvaluesoftheFlashPointforkeroseneandLGOwerefoundtobewithinÆ2Coftheexperimentaldata.ForSCN,theFlashPointtem-peratureswereintherangecommonlyencounteredintheliteraturebutinabsenceofexperimentalvaluesitwasnotpossibletocompare. ForthePourPoint,thepredictedvaluesdeviatefromthelaboratorydatawhicharereportedattheintervalsof3Cresultinginhighermeasurementuncertainty.AlsothePourPointequation[Eq.(15)]wasregressedusingonlylimiteddata.ThoughTable2showsthatthepresentPourPointcorrelationworksbetterthanotheravailablecorrelations,thereisscopeforimprovementbyusingthesameequationbutregressingconstantswithalargernumberofexperimentaldata.AsPourPointisameasureofwaxcontent,itmayhelptoincludewaxcontentanditsdistributioninthecrudeasinputs.ThepredictionoftheFreezePointisalwayswithinÆ2Cofthelaboratorymeasureddatawhichisquitesatisfactory.Itmay,however,bepossibletofur-therimprovetheFreezePointpredictionbyincludingwaxcontentintheproductorameasureofitinthecorrelation. ThepredictionofRecoveryat366Cisalwayshigherthanthelaboratoryreportedvalue.Duetounavail-abilityofsufficientreporteddataitwasnotpossibletoregresstheRecoverycorrelation[Eq.(20)]tocoverawiderange.Generationofregressioncoefficientsusingmoredataisexpectedtoimprovetheprediction. Thoughthemethodologyofpredictingproductprop-ertieshasworkedsatisfactorilyforallthecrudestested,theauthorsfeelthatstillmuchscopeisleftforintro-ductionofnatureofcrudeasaparameterinpredictionofvariousproperties.Asweknowthatthedistributionofsaturatedandunsaturatedhydrocarbonsdiffersfromcrudetocrude,usingthatinformationonemayimprovethepredictioncapability,especiallyforFlashPoint,PourPoint,FreezePointand%Recoveryat366C.Thisisbeinginvestigatedinthislaboratory. 6.Conclusions AmethodologyhasbeendevelopedtopredictCDUproductpropertieson-lineusingonlyroutinelymea-suredoperatingdataandareconciledcrudeTBPcurve.Usingthepresentmethodthepropertiescanbepre-dictedeveryminutewithareasonablelevelofaccuracy. Becauseoftherelativelyshortcomputationtime,itmaybepossibletousekeypropertiesforatrulyfeedbackcontroloftheCDUasopposedtothepresentpracticeofcutpointcontrolandthusallowingtightercontrolonproductquality. Thismethodologycanalsobeusedforsupervisorylevelon-lineoptimizationwhereoneaimstomaximizelong-termprofitsubjecttotheproductpropertiesbeinginacceptablelimits.Anotherpotentialofthismetho-dologycanberecognizedbyusingitforpredictionofpropertiesofFCCmainfractionatorunitiftheTBPortheASTMcurveofthefluidizedcatalyticcracking(FCC)reactoroutputisavailable.Insummary,suc-cessfulinstallationofthismethodologyinanexistingrefinerycanensurebetterproductqualitycontrolwithhigherproductivity. References [1]L.D.V.Horn,Crudeunitcomputercontrol—howgoodisit? HydrocarbonProcess59(4)(1980)145–148. [2]J.F.Boston,S.L.SullivanJr.,Anewclassofsolutionmethods formulticomponent,multistageseparationprocess,Can.J.Chem.Eng.52(1974)52–63. [3]R.A.Russel,Aflexibleandreliablemethodsolvessingletower andcrudedistillationproblems,Chem.Eng.Oct.(1983)53–59.[4]V.Kumar,A.Sharma,I.RoyChowdhury,S.Ganguly, D.N.Saraf,Acrudedistillationunitmodelsuitableforonlineapplications,FuelProcess.Tech.73(2001)1–21. [5]D.J.Dave,M.Z.Dabhiya,S.V.K.Satyadev,S.Ganguly, D.N.Saraf,Onlinetuningofasteadystatecrudedistillationunitmodelforrealtimeapplications,J.ProcessControl13(2003)267–282. [6]R.N.Watkins,PetroleumRefineryDistillation,2ndEdition,Gulf PublicationCompany,Houston,1981. [7]B.I.Lee,M.G.Kesler,Improvevaporpressuresprediction, HydrocarbonProcess,July(1980)163–167. [8]M.R.Riazi,T.E.Daubert,Analyticalcorrelationsinterconvert distillationcurvetypes,OilandGasJour.August25(1986)51–57. [9]T.E.Daubert,Petroleumfractiondistillationinterconversions, HydrocarbonProcess,September(1994)75–78. [10]N.V.K.Dutt,Ageneralizedequationforquickestimationof vaporpressure,Ind.J.Tech.31(1993)808–810. [11]W.L.Nelson,PetroleumRefineryEngineering,Kogakusha, Tokyo,1958. [12]R.M.Butler,G.M.Crooke,G.G.Lukk,B.G.Jameson,Indus-trialandEngineeringChemistry48(1956)808–812. [13]J.M.Lenoir,Predictflashpointsaccurately,HydrocarbonPro-cess54(1)(1975)95–99. [14]M.R.Riazi,T.E.Daubert,Predictingflashandpourpoints, HydrocarbonProcessSeptember(1987)81–83. [15]S.Chakrabarti,EstimationofPropertiesforPetroleumFractions usingRegressionModels,MTech.dissertation,I.I.T,Kanpur,1997. [16]S.Ganguly,J.Sadhukhan,D.N.Saraf,Artificialneuralnetwork basedestimationofpetroleumandproductproperties,Ind.Chem.Eng.SectionA,JanuaryMarch44(2002)294–299. [17]N.V.K.Dutt,Asimplemethodofestimatingtheviscosityof petroleumcrudeoilandfractions,Chem.Eng.J.45(1990)83–86.
因篇幅问题不能全部显示,请点此查看更多更全内容