第一节 概 述
土坡就是由土体构成、具有倾斜坡面的土体,它 的简单外形如图7-1所示。一般而言,土坡有两种类 型。由自然地质作用所形成的土坡称为天然土坡,如山坡、江河岸坡等;由人工开挖或回填而形成的土坡
称为人工土(边)坡,如基坑、土坝、路堤等的边坡。
图7-1 土坡各部位名称 土坡在各种内力和外力的共同作用下,有可能产生剪
切破坏和土体的移动。如果靠坡面处剪切破坏的面积
很大,则将产生一部分土体相对于另一部分土体滑动的现象,称为滑坡。土体的滑动一般系指土坡在一定范围内整体地沿某一滑动面向下和向外移动而丧失其稳定性。除设计或施工不当可能导致土坡的失稳外,外界的不利因素影响也触发和加剧了土坡的失稳,一般有以下几种原因:
1.土坡所受的作用力发生变化:例如,由于在土坡顶部堆放材料或建造建筑物而使坡顶受荷。或由于打桩振动,车辆行驶、爆破、地震等引起的振动而改变了土坡原来的平衡状态;
2. 土体抗剪强度的降低:例如,土体中含水量或超静水压力的增加;
3.静水压力的作用:例如,雨水或地面水流入土坡中的竖向裂缝,对土坡产生侧向压力,从而促进土坡产生滑动。因此,粘性土坡发生裂缝常常是土坡稳定性的不利因素,也是滑坡的预兆之一。
在土木工程建筑中,如果土坡失去稳定造成塌方,不仅影响工程进度,有时还会危及人的生命安全,造成工程失事和巨大的经济损失。因此,土坡稳定问题在工程设计和施工中应引起足够的重视。
天然的斜坡、填筑的堤坝以及基坑放坡开挖等问题,都要演算斜坡的稳定性,亦既比较可能滑动面上的剪应力与抗剪强度。这种工作称为稳定性分析。土坡稳定性分析是土力学中重要的稳定分析问题。土坡失稳的类型比较复杂,大多是土体的塑性破坏。而土体塑性破坏的分析方法有极限平衡法、极限分析法和有限元法等。在边坡稳定性分析中,极限分析法和有限元法都还不够成熟。因此,目前工程实践中基本上都是采用极限平衡法。极限平衡方法分析的一般步骤是:假定斜坡破坏是沿着土体内某一确定的滑裂面滑动,根据滑裂土体的静力平衡条件和莫尔—库伦强度理论,可以计算出沿该滑裂面滑动的可能性,即土坡稳定安全系数的大小或破坏概率的高低,然后,再系统地选取许多个可能的滑动面,用同样的方法计算其稳定安全系数或破坏概率。稳定安全系数最低或者破坏概率最高的滑动面就是可能性最大的滑动面。
本章主要讨论极限平衡方法在斜坡稳定性分析中的应用,并简要介绍有限元法的概念。
182
第二节 无粘性土坡稳定性分析
无粘性土坡即是由粗颗粒土所堆筑的土坡。相对而言,无粘性土坡的稳定性分析比较简单,可以分为下面二种情况进行讨论。
一、均质的干坡和水下坡
均质的干坡系指由一种土组成,完全在水位以上的无粘性土坡。水下土坡亦是由一种土组成,但完全在水位以下,没有渗透水流作用的无粘性土坡。在上述二种情况下,只要土坡坡面上的土颗粒在重力作用下能够保持稳定,那么,整个土坡就是稳定的。
在无粘性土坡表面取一小块土体来进行分析(图7-2),设该小块土体的重量为W,其法向分力N = Wcos,切向分力T = Wsin。法向分力产生摩擦阻力,阻止土体下滑,称为抗滑力,其值为R = N·tg=Wcos·tg。切向分力T是促使小土体下滑的滑动力。则土体的稳定安全系数Fs为:
抗滑力RWcostgtg (7-1) 滑动力TWsintg式中:——土的内摩擦角(°);
Fs——土坡坡角(°)。
图7-2 无粘性土坡
由上式可见,当=时,Fs=1,即其抗滑力等于滑动力,土坡处于极限平衡状态,此时的就称为天然休止角。当<φ时,土坡就是稳定的。为了使土坡具有足够的安全储备,一般取Fs=1.1~1.5。
图7-3 渗透水流逸出的土坡
二、有渗透水流的均质土坡
当边坡的内、外出现水位差时,例如基坑排水、坡外水位下降时,在挡水土堤内形成渗流场,如果浸润线在下游坡面逸
出(图7-3),这时,在浸润线以下,下游坡内的土体除了受到重力作用外,还受到由于水的渗流而产生的渗透力作用,因而使下游边坡的稳定性降低。
183
渗流力可用绘流网的方法求得。作法是先绘制流网,求滑弧范围内每一流网网格的平均水力梯度i,从而求得作用在网格上的渗透(流)力:
JiwiAi (7-2)
式中:w——水的重度;
Ai——网格的面积。
求出每一个网格上的渗透力Ji后,便可求得滑弧范围内渗透力的合力TJ。将此力作为滑弧范围内的外力(滑动力)进行计算,在滑动力矩中增加一项:
MsTJlJ (7-3) 式中:lJ——TJ距圆心的距离。
如果水流方向与水平面呈夹角θ,则沿水流方向的渗透力j =wi。在坡面上取土体V中的土骨架为隔离体,其有效的重量为V。分析这块土骨架的稳定性,作用在土骨架上的渗透力为JjVwiV。因此,沿坡面的全部滑动力,包括重力和渗透力为
TVsinwiVcos() (7-4)
坡面的正压力为
NVcoswiVsin() (7-5) 则土体沿坡面滑动的稳定安全系数:
Ntg[VcoswiVsin()]tg Fs (7-6) TVsinwiVcos()式中:i——渗透坡降; ——土的浮重度;
w——水的重度;
——土的内摩擦角。
若水流在逸出段顺着坡面流动,即θ=。这时,流经路途ds的水头损失为dh,所以,有
dh isin (7-7)
ds将其代入式(7-6),得:
tg Fs (7-8)
sattg由此可见,当逸出段为顺坡渗流时,土坡稳定安全系数降低/sat。因此,要保持同样的安全度,有渗流逸出时的坡角比没有渗流逸出时要平缓得多。为了使土坡的设计既经济又合理,在实际工程中,一般要在下游坝址处设置排水棱体,使渗透水流不直接从下游坡面逸出(图7-4)。这时的下游坡面虽然没有浸润线逸出,但是,在
184
图7-4 渗透水流未逸出的土坡
下游坡内,浸润线以下的土体仍然受到渗透力的作用。这种渗透力是一种滑动力,它将降低从浸润线以下通过的滑动面的稳定性。这时深层滑动面(如图7-4中虚线表示)的稳定性可能比下游坡面的稳定性差,即危险的滑动面向深层发展。这种情况下,除了要按前述方法验算坡面的稳定性外,还应该用圆弧滑动法验算深层滑动的可能性。
第三节 粘性土坡的稳定性分析
一般而言,粘性土坡由于剪切而破坏的滑动
面大多数为一曲面,一般在破坏前坡顶先有张裂
缝发生,继而沿某一曲线产生整体滑动。图7-5
中的实线表示一粘性土坡滑动面的曲面,在理论
分析时可以近似地将其假设为圆弧,如图中虚线
表示。为了简化计算,在粘性土坡的稳定性分析
中,常假设滑动面为圆弧面。建立在这一假定上图7-5 粘性土坡的滑动面 的稳定性分析方法称为圆弧滑动法。这是极限平衡方法的一种常用分析方法。
一、整体圆弧滑动法
瑞典的彼得森(K.E.Petterson)于1915年采用圆弧滑动法分析了边坡的稳定性。此后,该法在世界各国的土木工程界得到了广泛的应用。所以,整体圆弧滑动法也被称为瑞典圆弧法。
如图7-6,表示一个均质的粘性土坡,它可能沿圆弧面AC滑动。土坡失去稳定就是滑动土体绕圆心O发生转动。这里把滑动土体当成一个刚体,滑动土体的重量W为滑动力,将使土体绕圆心O旋转,滑动力矩Ms=Wd(d为通过滑动土体重心的竖直线与圆心O的
水平距离)。抗滑力矩MR由两部分组成:①滑动面AC上粘聚力产生的抗滑力矩,值为c·AC·R;②滑动土体的重量W在滑动面上的反力所产生的抗滑力矩。反力的大小和方向与土的内摩擦角值有关。当=0时,滑动面是一个光滑曲面,反力的方向必定垂直于滑动面,即通过圆心O,它不产生力矩,所以,抗滑力矩只有前一项c·AC·R。这时,可定义粘性土坡的稳定安全系数为:
F抗滑力矩MRcACR (7-9)
s滑动力矩MsWd
图7-6 整体圆弧滑动受力示意图
此式即为整体圆弧滑动法计算边坡稳定安全系数的公式。注意,它只适用于=0的情况。若≠0,则抗滑力与滑动面上的法向力有关,其求解可参阅下面的条分法。
185
二、瑞典条分法
所谓瑞典条分法,就是将滑动土体竖直分成若干个土条,把土条看成是刚体,分别求出作用于各个土条上的力对圆心的滑动力矩和抗滑力矩,然后按公式(7-9)求土坡的稳定安全系数。
把滑动土体分成若干个土条后,土条的两个侧面分别存在着条块间的作用力(图7-7)。作用在条块i上的力,除了重力Wi外,条块侧面ac和bd上作用有法向力Pi、Pi+1,切向力Hi、Hi+1,法向力的作用点至滑动弧面的距离为hi、hi+1。滑弧段cd的长度li,其上作用着法向力Ni和切向力Ti,Ti包括粘聚阻力ci·li和摩擦阻力Ni·tgi。考虑到条块的宽度不大,Wi和Ni可以看成是作用于cd弧段的中点。在所有的作用力中,Pi、Hi在分析前一土条时已经出现,可视为已知量,因此,待定的未知量有Pi+1、Hi+1、hi+1、Ni和Ti5个。每个土条可以建立三个静力平衡方程,即ΣFxi=0,ΣFzi=0和ΣMi=0和一个极限平衡方程Ti=(Ni·tgi+ci·li)/ Fs 。
如果把滑动土体分成n个条块,则n个条块之间的分界面就有(n-1)个。分界面上的未知量为3(n-1),滑动面上的未知量为2n个,还有待求的安全系数Fs ,未知量总个数为(5n-2),可以建立的静力平衡方程和极限平衡方程为4n个。待求未知量与方程数之差为(n-2)。而一般条分法中的n在10以上。因此,这是一个高次的超静定问题。为使问题求解,必须进行简化计算。
瑞典条分法假定滑动面是一个圆弧面,并认为条块间的作用力对土坡的整体稳定性影响不大,故而忽略不计。或者说,假定条块两侧的作用力大小相等,方向相反且作用于同一直线上。图7-8中取条块i进行分析,由于不考虑条块间的作用力,根据径向力的静力平衡条件,有:
Ni=Wicosi (7-10) 根据滑动弧面上的极限平衡条件,有:
Ti=Tfi/Fs=(ci·li+Ni·tgi)/ Fs (7-11)
186
式中:Tfi——条块i在滑动面上的抗剪强度; Fs——滑动圆弧的稳定安全系数。
另外,按照滑动土体的整体力矩平衡条件,外力对圆心力矩之和为零。在条块的三个作用力中,法向力Ni通过圆心不产生力矩。重力Wi产生的滑动力矩为:
∑Wi·di=∑Wi·R·sinθi (7-12)
滑动面上抗滑力产生的抗滑力矩为:
ciliNitgi TiRR (7-13)
Fs滑动土体的整体力矩平衡,即∑M=0,故有:
∑Wi·di=∑Ti·R (7-14) 将式(7-12)和式(7-13)代入式(7-14),并进行简化,得: Fs(clWcostg) (7-15) Wsiniiiiiii式(7-15)是最简单的条分法计算公式,因为它是由瑞典人费伦纽斯(W.Fellenius)等首
先提出的,所以称为瑞典条分法,又称为费伦纽斯条分法。
从分析过程可以看出,瑞典条分法是忽略了土条块之间力的相互影响的一种简化计算方法,它只满足于滑动土体整体的力矩平衡条件,却不满足土条块之间的静力平衡条件。这是它区别于后面将要讲述的其它条分法的主要特点。由于该方法应用的时间很长,积累了丰富的工程经验,一般得到的安全系数偏低,即误差偏于安全,所以目前仍然是工程上常用的方法。
三、毕肖甫条分法
毕肖甫(A.N.Bishop)于1955年提出一个考虑条块间侧面力的土坡稳定性分析方法,称为毕肖甫条分法。此法仍然是圆弧滑动条分法。
在 图7-9中,从圆弧滑动体内取出土条i进行分析。作用在条块i上的力,除了重力 Wi外,滑动面上有切向力Ti和法向力Ni,条块的侧面分别有法向力Pi、Pi+1和切向力Hi、Hi+1。假设土条处于静力平衡状态,根据竖向力的平衡条件,应有:
Fz0
(7-16)
WiHiNicosiTisiniNicosiWiHiTisini根据满足土坡稳定安全系数Fs的极限平衡条件,有:
Ti = (ci·li+Ni·tgi)/ Fs (7-11)
187
图7-9 毕肖甫法条块作用力分析
将式(7-11)代入式(7-16),整理后得:
clWiHiiisiniFscl1WiHiiisini (7-17) NisinitgimiFscosiFs式中: micosisinitgi (7-18) Fs考虑整个滑动土体的整体力矩平衡条件,各个土条的作用力对圆心的力矩之和为零。这时条块之间的力Pi和Hi成对出现,大小相等,方向相反,相互抵消,对圆心不产生力矩。滑动面上的正压力Ni通过圆心,也不产生力矩。因此,只有重力Wi和滑动面上的切向力Ti对圆心产生力矩。按式(7-14 )
WdTR
iii将式(7-11)代入上式,得
WiRsini1(ciliNitgi)R Fs将式(7-17)的Ni值代入上式,简化后得
Fs1[cibi(WiHi)tgi]miWisini (7-19)
这就是毕肖甫条分法计算土坡稳定安全系数Fs的一般公式。式中的ΔHi=Hi+1-Hi,仍然是未知量。如果不引进其它的简化假定,式(7-19)仍然不能求解。毕肖甫进一步假定ΔHi=0,实际上也就是认为条块间只有水平作用力Pi,而不存在切向作用力Hi。于是式(7-19)进一步简化为:
188
Fs1[cibiWitgi]miWsini (7-20)
i 此式称为简化的毕肖甫公式。式中的参数mi包含有稳定安全系数Fs。因此,不能直接求出土坡的稳定安全系数Fs,而需要采用试算的办法,迭代求算Fs值。为了便于迭代计算,已编制成mθ-θ关系曲线,如图7-10。
图7-10 mθ值曲线图
试算时,可以先假定Fs =1.0,由图7-10查出各个i所相应的mi值,并将其代入式(7-20)中,求得边坡的稳定安全系数Fs。若Fs与Fs 之差大于规定的误差,用Fs查mi,再次计算出稳定安全系数Fs,此如这样反复迭代计算,直至前后两次计算的稳定安全系数非常接近,满足规定精度的要求为止。通常迭代总是收敛的,一般只要试算3~4次,就可以满足迭代精度的要求。
与瑞典条分法相比,简化的毕肖甫法是在不考虑条块间切向力的前提下,满足力的多边形闭合条件,也就是说,隐含着条块间有水平力的作用,虽然在公式中水平作用力并未出现。所以它的特点是:(1)满足整体力矩平衡条件;(2)满足各个条块力的多边形闭合条件,但不满足条块的力矩平衡条件;(3)假设条块间作用力只有法向力没有切向力;(4)满足极限平衡条件。由于考虑了条块间水平力的作用,得到的稳定安全系数较瑞典条分法略高一些。很多工程计算表明,毕肖甫法与严格的极限平衡分析法,即满足全部静力平衡条件的方法(如下述的简布法)相比,结果甚为接近。由于计算过程不很复杂,精度也比较高,所以,该方法是目前工程中很常用的一种方法。
四、普遍条分法(简布法,N.Janbu)
普遍条分法的特点是假定条块间水平作用力的位置。在这一假定前提下,每个土条块都满足全部的静力平衡条件和极限平衡条件,滑动土体的整体力矩平衡条件也自然得到满足。而且,它适用于任何滑动面,而不必规定滑动面是一个圆弧面,所以称为普遍条分法。它是由简布提出的,又常称为简布法。
1
图7-11 简布法条块作用力分析
从图7-11 (a)滑动土体ABC中取任意条块i进行静力分析。作用在条块上的力及其作用点见图7-11(b)所示。按照静力平衡条件
FFz0,得:
WiHiNicosiTisiniNicosiWiHiTisini
x (7-16)
0,得:
PiTicosiNisini (7-21) 将式(7-16)代入式(7-21)整理后得:
sin2i PiTicosicosi(WiHi)tgi (7-22) 根据极限平衡条件,考虑土坡稳定安全系数Fs
1 Ti(ciliNitgi) (7-11)
Fs由式(7-16)得:
Ni代入式(7-11),整理后得;
1Fs1(WiHitgi)cilicosi (7-24)
tgitgi1Fs1(WiHiTisini) (7-23) cosi Ti将式(7-24)代入式(7-22),得:
190
1 PiFssec2i[clcosi(WiHi)tgi](WiHi)tgi (7-25)
tgitgiii1Fs图7-12表示作用在土条条块侧面的法向力P,显然有P1=ΔP1,P2=P1+ΔP2=ΔP1+ΔP2,依此类推,有:
PiPj1ij (7-26)
若全部土条条块的总数为n,则有: Pn
图7-12 条块侧面法向力
P0ii1n
(7-27)
将式(7-25)代入式(7-27),得:
1Fssec2i[clcosi(WiHi)tgi]tgitgiii1Fs(WiHi)tgi0
整理后得:
sec2i[cilicosi(WiHi)tgi]1tgtg/FiisFs(WiHi)tgi[cb(WH)tg]m(WH)siniiiiiiii1
i(7-28)
比较毕肖甫公式(7-19)和简布公式(7-28),可以看出两者很相似,但分母有差别,毕肖甫公式是根据滑动面为圆弧面,滑动土体满足整体力矩平衡条件推导出的。简布公式则是利用力的多边形闭合和极限平衡条件,最后从
P0得出。显然这些条件适用于任何形
ii1n式的滑动面而不仅仅局限于圆弧面,在式(7-28)中,ΔHi仍然是待定的未知量。毕肖甫没有解出ΔHi,而让ΔHi=0,从而成为简化的毕肖甫公式。而简布法则是利用条块的力矩平衡条件,因而整个滑动土体的整体力矩平衡也自然得到满足。将作用在条块上的力对条块滑弧段中点Oi取矩 (图7-11(b)),并让∑MOi=0。重力Wi和滑弧段上的力Ni和Ti均通过
191
Oi,不产生力矩。条块间力的作用点位置已确定,故有:
HiXiXi1(HiHi)(PiPi)hihiXitgi2221PihiXitgi02
略去高阶微量整理后得: HiXiPihipihi0
hih HiPiPii (7-29)
XiXi
令Hi0 Fs式(7-28) Pi式( 7-25) Pi式(7-26) Hi式( 7-29) Hi式(7-30) Fi式( 7-28) FiFs<0
HiHi1Hi (7-30) 式(7-29)表示土条间切向力与法向力之间的关系。式中符号见图7-11。
由公式(7-25)、(7-26)、(7-27)、(7-28)、(7-29)和(7-30),利用迭代法可以求得普遍条分法的边坡稳定安全系数Fs。其步骤如下:
(1) 假定Hi0,利用式(7-28),迭代求第一次近似
的边坡稳定安全系数Fs1。
(2) 将Fs1和Hi0代入式(7-25),求相应的Pi(对每
一条块,从1到n)。 (3) 用式(7-26) PiiPj1j求条块间的法向力(对每
一条块,从1到n)。 否 (4) 将Pi和ΔPi代入式(7-29)和(7-30),求条块间的切 是 向作用力Hi (对每一条块,从1到n)和ΔHi。
End (5) 将ΔHi重新代入式(7-28),迭代求新的稳定安全系
数Fs2 。
图7-13 简布法计算程序流程 如果Fs2-Fs1>Δ(Δ为规定的计算精度),重新按上述
步骤(2)—(5)进行第二轮计算。如此反复进行,直至Fs(k)-Fs(k-1)≤Δ为止。Fs(k)就是该假定滑动面的稳定安全系数。边坡真正的稳定安全系数还要计算很多滑动面,进行比较,找出最危险的滑动面,其边坡稳定安全系数才是真正的安全系数。这种计算工作量相当浩繁,一般要在计算机上计算。用普遍条分法计算一个滑动面稳定安全系数的流程如图7-13。
【 例题7-1】 一简单的粘性土坡,高25m,坡比1∶2,辗压土的重度=20kN/m3,内摩擦角=26.6°(相当于tg=0.5),粘结力c =10kN/m2,滑动圆心O点如图7-14所示,试
192
分别用瑞典条分法和简化毕肖甫法求该滑动圆弧的稳定安全系数,并对结果进行比较。
图7-14 例题7-1图
解:为了使例题计算简单,只将滑动土体分成6个土条,分别计算各条块的重量Wi,滑动面长度li,滑动面中心与过圆心铅垂线的圆心角θi,然后,按照瑞典条分法和简化毕肖甫法进行稳定分析计算。
1.瑞典条分法
瑞典条分法分项计算结果见例表7-1。
Wsinii3584kN
Wcostgiiiiii4228kN
clii650kN
边坡稳定安全系数 Fs(Wcostgcl)42286501.36
3584Wsiniiii2.简化毕肖甫法
根据瑞典条分法得到计算结果Fs=1.36,由于毕肖甫法的稳定安全系数稍高于瑞典条分法。设Fs1=1.55,按简化的毕肖甫条分法列表分项计算,结果如例表7-2。
cibiWitgi5417kN
mi
193
例表7-1 例题7-1瑞典条分法计算成果
条 块 编 号 -1 0 1 2 3 4
θi (°) -9.93 0 13.29 27.37 43.60 59.55 Wi (kN) 412.5 1600 2375 2625 2150 487.5 sini cosi Wisini Wicosi Wicositgi(kN) -71.0 0 546 1207 1484 420 (kN) 406.3 1600 2311 2331 1557 247 (kN) 203 800 1156 1166 779 124 li (m) 8.0 10.0 10.5 11.5 14.0 11.0 cili (kN) 80 100 105 115 140 110 -0.172 0 0.230 0.460 0.690 0.862 0.985 1.0 0.973 0.888 0.724 0.507 例表7-2 例题7-1毕肖普法分项计算成果 编号 -1 0 1 2 3 4 cosi 0.985 1.00 0.973 0.888 0.724 0.507 sini -0.172 0 0.230 0.460 0.690 0.862 sinitgi -0.086 0 0.115 0.230 0.345 0.431 sinitgi Mθi Fs-0.055 0 0.074 0.148 0.223 0.278 0.93 1.00 1.047 1.036 0.947 0.785 Wisini -71 0 546 1207 1484 420 cibi Witgi 80 100 100 100 100 50 206.3 800 1188 1313 1075 243.8 cibiWitgi mi307.8 900 1230 13 1241 374.3 安全系数
Fs2m(cbWtg)54171.51
3586Wsiniiiiiii1 毕肖甫法稳定安全系数公式中的滑动力∑Wisini与瑞典条分法相同。Fs1-Fs2 = 0.04,误差较大。按Fs2 = 1.51,进行第二次迭代计算,结果列于例表7-3中。
cibiWitgi5404.8
mi稳定安全系数
Fs21(cibiWitgi)miWsinii5404.81.507 3586194
Fs2Fs30.003,十分接近,因此,可以认为Fs = 1.51。
例表7-3 例题7-1毕肖普法第二次迭代计算成果 编号 -1 0 1 2 3 4 cosi 0.985 1.00 0.973 0.888 0.724 0.507 sini -0.172 0.0 0.230 0.460 0.690 0.862 sinitgisinitgi Fs -0.086 0 0.115 0.230 0.345 0.431 -0.057 0 0.076 0.152 0.228 0.285
Mθi 0.928 1.00 1.045 1.040 0.952 0.792 Wisini -71 0 546 1207 1484 420 cibi 80 100 100 100 100 50 WitgicibiWitgi mi 206.3 800 1188 1313 1075 243.8 308.5 900 1232.5 1358.6 1234.2 371 计算结果表明,简化毕肖甫条分法的稳定安全系数较瑞典条分法高,约大0.15,与一
般结论相同。
五、有限元法
从瑞典条分法到普遍条分法的基本思路都是把滑动土体分成有限宽度的土条,把土条当成刚体,根据滑动土体的静力平衡条件和极限平衡条件,求得滑动面上力的分布,从而可以计算出边坡稳定安全系数Fs。但是,因为土体是变形体,而并非是刚体,所以,引用分析刚体的办法来分析变形体,并不满足变形协调条件,因而计算出的滑动面上的应力状态不可能是真实的。有限元法就是把土坡当成变形体,按照土的变形特性,计算出土坡内的应力分布,然后,再把圆弧滑动面的概念引入其中,验算滑动土体的整体抗滑稳定性。 将土坡划分成许多单元体如图7-15所示。用有限元法可以计算出每个土单元的应力、应变和每个结点的结点力和位移。这种计算目前已经成为土石坝应力变形分析的常用方法,有各种现成的程序可供应用。图7-16表示的是一座土坝采用有限元法分析得到的竣工时坝体的剪应变分布图,可以清楚看出坝坡在重力的作用下剪切变形的轨迹类似于滑弧面。
图7-15 土坝的有限元网格和滑弧面 图7-16 某坝竣工后的剪应变分布(有限元法分析)
土坡的应力计算出来以后,再引入圆弧滑动面的概念。图7-16中表示一个可能的圆弧滑动面。把可能的圆弧滑动面划分成若干个小弧段Δli,小弧段Δli上的应力用弧段中点的应力代表,其值可以按照有限元法应力分析的结果,根据弧段中点所在的单元的应力确定,表示为xi,zi,xzi。如果小弧段Δli与水平线的倾角为i,则作用在弧段上的法向应力和剪应力分别为
11 ni(xizi)(xizi)cos2ixzisin2i (7-31)
22
195
ixzicos2i1(xizi)sin2i (7-32) 2根据莫尔—库伦强度理论,该点土的抗剪强度为 ficinitgi
将滑动面上所有小弧段的剪应力和抗剪强度分别求出来以后,再累加求得沿着滑动面总的剪切力∑ili和抗剪力∑fi。因此,边坡稳定安全系数为
Fs(ci1ninitgi)lilii1ni (7-33)
很显然,有限元分析方法的优点是把边坡稳定分析与坝体的应力和变形分析结合起来。这时,滑动土体自然满足静力平衡条件而不必如条分法那样引入人为的假定。但是,当边坡接近失稳时,滑裂面通过的大部分土单元处于临近破坏状态,这时,用有限元法分析边坡内的应力和变形所需要的土的基本特性,如变形特性,强度特性等均变得十分复杂,因此,要提出一种能反映土体实际受力状况的计算模型是很不容易的。如果说在边坡稳定性分析中极限平衡分析法是当前工程上主要应用的方法,那么,有限元方法则是一种潜在的具有很大发展前景的方法。
六、最危险滑裂面的确定方法和容许安全系数
(一)最危险滑裂面的位置
以上介绍的是计算某个位置已经确定的滑动面稳定安全系数的几种方法。这一稳定安全系数并不代表边坡的真正稳定性,因为边坡的滑动面是任意选取的。假设边坡的一个滑动面,就可计算其相应的安全系数。真正代表边坡稳定程度的稳定安全系数应该是稳定安全系数中的最小值。相应于边坡最小的稳定安全系数的滑动面称为最危险滑动面,它才是土坡真正的滑动面。
确定土坡最危险滑动面圆心的位置和半径大小是稳定分析中最繁琐、工作量最大的工作。需要通过多次的计算才能完成。这方面费伦纽斯(W.Fellenius)提出的经验方法,对于较快地确定土坡最危险的滑动面很有帮助。
费伦纽斯认为,对于均匀粘性土坡,其最危险的滑动面一般通过坡趾。在=0法的边坡稳定分析中,最危险滑弧圆心的位置可以由图7-17(a)中1和2夹角的交点确定。1、
2的值与坡角α大小的关系,可由表7-1查用。
对于>0的土坡,最危险滑动面的圆心位置如图7-17(b)所示。首先按图7-17(b)中所示的方法确定DE线。自E点向DE延线上取圆心O1、O2…,通过坡趾A分别作圆弧,AC1、AC2、…,并求出相应的边坡稳定安全系数Fs1、Fs2…。
表7-1 各种坡角的β1、β2值
坡角α 60° 45° 196
坡度1∶m 1∶0.58 1∶1.0 β1 29° 28° β2 40° 37° 33°41′ 26°34′ 18°26′ 14°02′ 11°19′ 1∶1.5 1∶2.0 1∶3.0 1∶4.0 1∶5.0 26° 25° 26° 25° 25° 35° 35° 35° 36° 39°
然后,再用适当的比例尺标在相应的圆心点上,并且连接成安全系数Fs随圆心位置的变化曲线。曲线的最低点即为圆心在DE线上时安全系数的最小值。但是真正的最危险滑弧圆心并不一定在DE线上。通过这个最低点,引DE的垂直线FG。在FG线上,在DE延线的最
,O2…,用类似步骤确定FG线上对应于最小安全系数的圆心,小值前后再定几个圆心O1这个圆心。才被认为是通过坡趾滑出时的最危险滑动圆弧的中心。
当地基土层性质比填土软弱,或者坝坡不是单一的土坡,或者坝体填土种类不同、强度互异时,最危险的滑动面就不一定从坡趾滑出。这时寻找最危险滑动面位置就更为繁琐。实际上,对于非均质的、边界条件较为复杂的土坡,用上述方法寻找最危险滑动面的位置
将是十分困难的。随着计算机技术的发展和普及,目前可以采用最优化方法,通过随机搜索,寻找最危险的滑动面的位置。国内已有这方面的程序可供使用。
197
表7-2 碾压式土石坝坝坡容许稳定安全系数
工 程 等 级 运用条件 Ⅰ 正常运用条件 非常运用条件Ⅰ 非常运用条件Ⅱ 注:正常运用条件系指:
(1)水库水位处于正常高水位(或设计洪水位)与死水位之间的各种水位下的稳定渗流期; (2)水库水位在上述范围内的经常性正常降落; (3)抽水蓄能电站的水库水位的经常性变化和降落。 非常运用条件Ⅰ系指: (1)施工期;
(2)校核洪水位下有可能形成稳定渗流的情况;
(3)水库水位的非常降落,如自校核洪水位降落、降落至死水位以下、大流量快速泄空等; (4)正常运用条件遭遇地震。
非常运用条件Ⅱ系指以上非常运用条件(1)—(3)再遭遇地震的情况。
1.30 1.20 1.10 Ⅱ 1.25 1.15 1.05 Ⅲ 1.20 1.10 1.05 Ⅳ、Ⅴ 1.15 1.05 1.00 (二)边坡容许安全系数
在土坡稳定的分析中,从土体材料的强度指标到计算方法,很多因素都无法准确确定。因此,如果计算得到的土坡稳定安全系数等于1或稍大于1,并不表示边坡的稳定性能得到可靠的保证。安全系数必须满足一个最起码的要求,称为容许安全系数。容许安全系数值是以过去的工程经验为依据并以各种规范的形式确定。因此采用不同的抗剪强度试验方法和不同的稳定分析方法所得到的安全系数差别甚大,所以在应用规范所给定的土坡稳定容许安全系数时,一定要注意它所规定的试验方法和计算方法。
表7-2为1984年水电部颁布的《碾压土石坝设计规范》(SDJ218—84)中的边坡容许安全系数表。表中除注明者外,均适用于瑞典圆弧法。对Ⅰ、Ⅱ级的中、高土石坝以及一些复杂的情况,应同时采用毕肖甫法或其它更严格的方法(如普遍条分法等)进行计算。此时安全系数的容许值,应比表中所规定的值略微提高10%左右。对于Ⅰ级土石坝在正常使用条件下,安全系数不得小于1.5。
第四节 天然土坡的稳定问题
天然土体由于形成的自然环境、沉积时间以及应力历史等因素不同,性质比人工填土要复杂得多,边坡稳定分析仍然可按上述方法进行,但在强度指标的选择上要更为慎重。
198
一、裂隙硬粘土的边坡稳定性
硬粘土通常为超固结土,其应力—应变关系曲线属应变软化型曲线,如图7-18所示。这类土如果也按一般的天然土坡稳定分析办法,认为剪切过程中密度不变,故宜采用不固结不排水强度指标。用u=0法计算,得到的稳定安全系数一般过大,造成偏于不安全的结果。表7-3是5个已发生滑坡的这类土的天然土坡或挖方的稳定性分析实例。表中数据表明,用
图7-18 硬粘土的应力—应变关系曲线
u=0法分析时,稳定安全系数均很大,但实
际上都发生了不稳定破坏。其原因是土坡内滑动面上的剪应力分布不均匀,各点不能同时达到破坏。破坏过程是在某些部位土的剪应力首先达到峰值,而其它部位的土尚未破坏,于是随着应变的不断加大,已经破坏部位的强度不断减小,直至变成残余强度。其它点也 会相继发生这种情况,形成所谓渐进性的破坏现象。在这种情况下,边坡破坏的时间持续很长,而滑裂面的强度降至很低。有些天然滑坡体以及断层带,在其历史年代上发生过多次的滑移,经受很大的应变,土的强度下降很多。在这种情况下验算其稳定性时需注意选取其残余强度。
表7-3 几个超固结土滑坡的实例
边 坡 类 型 挖 方 天然土坡 挖 方 挖 方 天然土坡
粘 土 资 料 W 24 20 30 30 28 WL 57 45 86 81 110 WP 27 20 30 28 20 IP 30 25 56 33 90 WWP IP(按u=0法分析) 安全系数Fs 3.2 4.0 4.0 3.8 6.3 备 注 -0.10 0.09 超固结 裂隙硬粘土 199
二、软土地基上土坡的稳定性分析
在软弱地基上修筑堤坝或路基,其破坏常由地基不稳定所引起。当软土比较均匀,且厚度较大时,实地勘测和试验表明其滑动面是一个近似的圆柱面,切入地基一定深度如图7-19中ABC所示。AB部分通过地基,BC部分通过坝体。根据瑞典圆弧法公式(7-9),Fs=MR/Ms。抗滑力矩
图7-19 软弱地基上的土坡滑动
MR由两部分组成:一是AB段上抗滑力所产生的抗滑力矩MR I;另一部分是BC段上抗滑力所产生的抗滑力矩MR Ⅱ。考虑到软土地基上的堤坝破坏时,在形成滑动面之前坝体一般已发生严重裂缝,或者软土地基已经破坏而坝体部分的抗剪强度尚未完全发挥。因此,如果全部计算MRⅠ和MR Ⅱ,求得的稳定系数偏大。为安全起见,工程中有时建议对高度在5—6m以下的堤防或路堤,可以不考虑坝体部分的抗滑力矩。即让MR Ⅱ=0,以此进行稳定分析(滑动力矩则应包括坝体部分的MsⅡ,而且是最主要的部分)。而对于中等高度的堤坝,则可考虑采用部分的MR Ⅱ,可根据具体工程情况并参照当地经验,采用适当的折减系数,例如用0.5。
对于坝基内深度不大处有软弱夹层时,滑动面将不是连续的圆弧面而是由两段不同的圆弧和一段沿软弱夹层的直线所组成的复合滑动面ABCD(图7-20)。在这种情况下,土坡的稳定性分析可采用如下的近似方法计算。图7-20中滑动土体由不同圆心和半径的两段圆弧AB和CD以及软弱夹层面BC组成。
用竖直线BB和CC将滑动土体分成ABB′、BBCC和CCD三部分。第Ⅰ部分对中间第Ⅱ部分作用以推力PⅠ,第Ⅲ部分对中间第Ⅱ部分提供以抗力PⅡ。现在来分析中间部分土体B′BCC′的抗滑稳定性。其稳定安全系数可表达为:
(clWtg)PI Fs (7-34)
PII式中:c、——为软弱夹层土的抗剪强度指标;
200
W ——土体B′BCC′的重量; l ——滑动面在软弱夹层上的长度;
PⅠ——土体ABB′作用于土体B′BCC′的滑动力,假定为水平方向; PⅡ——土体CC′D对土体B′BCC′所提供的抗力,假定为水平方向。 PⅠ和PⅡ是两个待定的力,可以用如下的作图法求之。
将圆弧段的滑动土体按条分法分成若干条块,并假定条块间的作用力为水平方向。取任意土条块进行力的平衡分析。作用在土条块上的力有两个侧面上的水平力Pi和Pi-1,重力Wi和滑动弧段上的反力Ri以及粘聚力ci li。其中Wi和ci li的大小和方向均已知。Ri和ΔPi=Pi-Pi-1的方向已知,大小待定。根据平衡力系力的多边形闭合的原理,Ri和ΔPi可由图解法确定。这样从上而下,逐个土条进行图解分析。第一个土条的条间力P1=ΔP1,第二个土条的条间力P2=P1+ΔP2=
P。依此类推就可以求出BB′面上的作用力
i
1
2
PⅠ。同理可以求得CC′面上的作用力PⅡ。PⅠ和PⅡ算出以后,就可以代入式(7-34)求复合滑动面ABCD的稳定安全系数。
将这种简化计算方法与折线滑动面稳定安全系数的计算方法进行对比,可以看出,这种方法算得的稳定安全系数并不代表整个复合滑动面ABCD的稳定系数,而是假定图7-20中圆弧滑块ABB′和CCD的安全系数Fs=1.0的情况下,中部块体BBCC的安全系数。要计算整个块体ABCD的安全系数,必须在求条块间水平作用力Pi时,将图7-20(b)中滑
-tgi弧段li上的粘聚力改成ci li/Fs,将反力Ri与弧面法线的夹角改成i=tg1。这样用公
Fs式(7-34)求安全系数Fs时就必须采用迭代法,即先假定一个稳定安全系数Fs 0,用图解法求PⅠ和PⅡ,然后代入式(7-34),求安全系数Fs 1。当Fs 1与Fs 0之差大于允许误差时,用Fs 1代替Fs 0重新用图解法求PⅠ和PⅡ,再次由式(7-34)计算安全系数FsⅡ。如此重复进行,直至由式(7-34)算出的安全系数与计算PⅠ和PⅡ时用的安全系数差别小于允许误差为止,这时的安全系数Fs就是复合滑动面ABCD的真正稳定安全系数。
另外,本法中AB、BC和CD都是任意假定的,得到的稳定安全系数只代表一个特定滑动面上的稳定安全系数。还必须假定很多个可能的滑动面进行系统计算,得到最小的稳定安全系数,才是真正代表边坡稳定性的安全系数。这种计算工作量十分浩繁。为简化计算,可把B′和C′定在坡肩和坡脚处。并把BB′和CC′当成光滑挡土墙的墙面,将PⅠ变为朗肯的主动土压力Pa。
2z012 PaH1Ka2cH1KaKa (7-35)
22式中,z0——填土中主动土压力为0的深度,在数值上,z0=2cKa;Ka为朗肯主动土
压力系数,其值为Katg245;c和为填土的抗剪强度指标,而PⅡ则是朗肯的被
2动土压力PP。
201
12 PPH2KP2cH2KP (7-36)
2KP为朗肯被动土压力系数,其值为KPtg245。
2PⅠ和PⅡ求出后,就可用式(7-34)直接求土坡沿复合滑动面的稳定安全系数Fs。
最后值得一提的是,无论是天然土坡还是人工土坡,在许多情况下,土体内都存在着孔隙水压力。例如, 土体内水的渗流所引起的渗透压力或者因填土而引起的超静孔隙水压力。孔隙水压力的大小在有些情况下比较容易确定,而在有些情况下则较难确定或无法确定。例如稳定渗流引起的渗透压力一般可以根据流网比较准确地确定,而在施工期、水位骤降期以及地震时产生的孔隙水压力就比较难以确定。另外,土坡在滑动过程中的孔隙水压力变化目前几乎还没有办法确定。所以,在前面所讨论的边坡稳定计算方法中,作用于滑动土体上的力是用总应力表示,还是用有效应力表示,是一个十分重要的问题。显而易见,用有效应力表示要优于用总应力表示。但是,鉴于孔隙水压力不容易确定,故而有效应力法在工程中的应用尚存在实际困难。因此,这方面的工作还有待于进一步研究。有关这方面的内容,请参考相关的资料和专著。
202
因篇幅问题不能全部显示,请点此查看更多更全内容