TensorFlow超参数及其调整
正如你目前所看到的,神经网络的性能非常依赖超参数。因此,了解这些参数如何影响网络变得至关重要。
常见的超参数是学习率、正则化器、正则化系数、隐藏层的维数、初始权重值,甚至选择什么样的优化器优化权重和偏置。
超参数调整过程
1. 调整超参数的第一步是构建模型。与之前一样,在 TensorFlow 中构建模型。
2. 添加一种方法将模型保存在 model_file 中。在 TensorFlow 中,可以使用 Saver 对象来完成。然后保存在会话中:
3. 确定要调整的超参数,并为超参数选择可能的值。在这里,你可以做随机的选择、固定间隔值或手动选择。三者分别称为随机搜索、网格搜索和手动搜索。例如,下面是用来调节学习率的代码:
4. 选择对损失函数给出最佳响应的参数。所以,可以在开始时将损失函数的最大值定义为 best_loss(如果是精度,可以选择将自己期望得到的准确率设为模型的最低精度):
5. 把你的模型放在 for 循环中,然后保存任何能更好估计损失的模型: