c#数字图像处理(七)直⽅图匹配
直⽅图匹配,⼜称直⽅图规定化,即变换原图的直⽅图为规定的某种形式的直⽅图,从⽽使两幅图像具有类似的⾊调和反差。直⽅图匹配属于⾮线性点运算。
直⽅图规定化的原理:对两个直⽅图都做均衡化,变成相同的归⼀化的均匀直⽅图,以此均匀直⽅图为媒介,再对参考图像做均衡化的逆运算
/// /// 直⽅图匹配 ///
/// 原始图像
/// 匹配图像 /// 处理后图像 /// 处理成功 true 失败 false
public static bool HistogramMatching(Bitmap srcBmp, Bitmap matchingBmp, out Bitmap dstBmp) {
if (srcBmp == null || matchingBmp == null) {
dstBmp = null; return false; }
dstBmp = new Bitmap(srcBmp);
Bitmap tempSrcBmp = new Bitmap(srcBmp);
Bitmap tempMatchingBmp = new Bitmap(matchingBmp); double[] srcCpR = null; double[] srcCpG = null; double[] srcCpB = null; double[] matchCpB = null; double[] matchCpG = null; double[] matchCpR = null;
//分别计算两幅图像的累计概率分布
getCumulativeProbabilityRGB(tempSrcBmp, out srcCpR, out srcCpG, out srcCpB);
getCumulativeProbabilityRGB(tempMatchingBmp, out matchCpR, out matchCpG, out matchCpB); double diffAR = 0, diffBR = 0, diffAG = 0, diffBG = 0, diffAB = 0, diffBB = 0; byte kR = 0, kG = 0, kB = 0; //逆映射函数
byte[] mapPixelR = new byte[256]; byte[] mapPixelG = new byte[256]; byte[] mapPixelB = new byte[256]; //分别计算RGB三个分量的逆映射函数 //R
for (int i = 0; i < 256; i++) {
diffBR = 1;
for (int j = kR; j < 256; j++) {
//找到两个累计分布函数中最相似的位置
diffAR = Math.Abs(srcCpR[i] - matchCpR[j]); if (diffAR - diffBR < 1.0E-08)
{//当两概率之差⼩于0.000000001时可近似认为相等 diffBR = diffAR;
//记录下此时的灰度级 kR = (byte)j;
} else {
kR = (byte)Math.Abs(j - 1); break; } }
if (kR == 255) {
for (int l = i; l < 256; l++) {
mapPixelR[l] = kR; }
break; }
mapPixelR[i] = kR; } //G
for (int i = 0; i < 256; i++) {
diffBG = 1;
for (int j = kG; j < 256; j++) {
diffAG = Math.Abs(srcCpG[i] - matchCpG[j]); if (diffAG - diffBG < 1.0E-08) {
diffBG = diffAG; kG = (byte)j; } else {
kG = (byte)Math.Abs(j - 1); break; } }
if (kG == 255) {
for (int l = i; l < 256; l++) {
mapPixelG[l] = kG; }
break; }
mapPixelG[i] = kG; } //B
for (int i = 0; i < 256; i++) {
diffBB = 1;
for (int j = kB; j < 256; j++) {
diffAB = Math.Abs(srcCpB[i] - matchCpB[j]); if (diffAB - diffBB < 1.0E-08) {
diffBB = diffAB; kB = (byte)j; } else {
kB = (byte)Math.Abs(j - 1); break; } }
if (kB == 255) {
for (int l = i; l < 256; l++) {
mapPixelB[l] = kB; }
break; }
mapPixelB[i] = kB; }
//映射变换
BitmapData bmpData = dstBmp.LockBits(new Rectangle(0, 0, dstBmp.Width, dstBmp.Height), ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb); unsafe {
byte* ptr = null;
for (int i = 0; i < dstBmp.Height; i++) {
ptr = (byte*)bmpData.Scan0 + i * bmpData.Stride; for (int j = 0; j < dstBmp.Width; j++) {
ptr[j * 3 + 2] = mapPixelR[ptr[j * 3 + 2]];
ptr[j * 3 + 1] = mapPixelG[ptr[j * 3 + 1]]; ptr[j * 3] = mapPixelB[ptr[j * 3]]; } } }
dstBmp.UnlockBits(bmpData); return true; }
/// /// 计算各个图像分量的累计概率分布 ///
/// 原始图像
/// R分量累计概率分布 /// G分量累计概率分布 /// B分量累计概率分布
private static void getCumulativeProbabilityRGB(Bitmap srcBmp, out double[] cpR, out double[] cpG, out double[] cpB) {
if (srcBmp == null) {
cpB = cpG = cpR = null; return; }
cpR = new double[256]; cpG = new double[256]; cpB = new double[256]; int[] hR = null; int[] hG = null; int[] hB = null;
double[] tempR = new double[256]; double[] tempG = new double[256]; double[] tempB = new double[256];
getHistogramRGB(srcBmp, out hR, out hG, out hB); int totalPxl = srcBmp.Width * srcBmp.Height; for (int i = 0; i < 256; i++) {
if (i != 0) {
tempR[i] = tempR[i - 1] + hR[i]; tempG[i] = tempG[i - 1] + hG[i]; tempB[i] = tempB[i - 1] + hB[i]; } else {
tempR[0] = hR[0]; tempG[0] = hG[0]; tempB[0] = hB[0]; }
cpR[i] = (tempR[i] / totalPxl); cpG[i] = (tempG[i] / totalPxl); cpB[i] = (tempB[i] / totalPxl); } }
/// /// 获取图像三个分量的直⽅图数据 ///
/// 图像
/// R分量直⽅图数据 /// G分量直⽅图数据 /// B分量直⽅图数据
public static void getHistogramRGB(Bitmap srcBmp, out int[] hR, out int[] hG, out int[] hB) {
if (srcBmp == null) {
hR = hB = hG = null; return; }
hR = new int[256]; hB = new int[256]; hG = new int[256];
BitmapData bmpData = srcBmp.LockBits(new Rectangle(0, 0, srcBmp.Width, srcBmp.Height), ImageLockMode.ReadOnly, PixelFormat.Format24bppRgb); unsafe {
byte* ptr = null;
for (int i = 0; i < srcBmp.Height; i++) {
ptr = (byte*)bmpData.Scan0 + i * bmpData.Stride; for (int j = 0; j < srcBmp.Width; j++) {
hB[ptr[j * 3]]++; hG[ptr[j * 3 + 1]]++; hR[ptr[j * 3 + 2]]++; }
} }
srcBmp.UnlockBits(bmpData); return; }