99网
您的当前位置:首页二元一次方程组检测题

二元一次方程组检测题

来源:99网
第八章 二元一次方程组单元知识检测题

一、选择题(每小题3分,共24分) 1.方程2x-

1=0,3x+y=0,2x+xy=1,3x+y-2x=0,x2-x+1=0中,二元一次方程的个y数是( )

A.1个 B.2个 C.3个 D.4个 2.二元一次方程组3x2y3的解是( )

x2y53xB.2y2x2C.3y2x7D. y1x1 A.y03.关于x,y的二元一次方程组的值是(• ) A.k=-

xy5k的解也是二元一次方程2x+3y=6的解,则k

xy9k3344 B.k= C.k= D.k=- 44334.如果方程组xy1有唯一的一组解,那么a,b,c的值应当满足( )

axbyc A.a=1,c=1 B.a≠b C.a=b=1,c≠1 D.a=1,c≠1 5.方程3x+y=7的正整数解的个数是( )

A.1个 B.2个 C.3个 D.4个 6.已知x,y满足方程组xm4,则无论m取何值,x,y恒有关系式是( )

y5m A.x+y=1 B.x+y=-1 C.x+y=9 D.x+y=9

7.如果│x+y-1│和2(2x+y-3)2互为相反数,那么x,y的值为( ) A.x1y2x1B.y2x2C.y1x2 D.y1

8.若x2,axby1的解,则(a+b)·(a-b)的值为( ) 是方程组y1bxby73535 B. C.-16 D.16 33+ya

-3b

A.-

二、填空题(每小题3分,共24分) 9.若2x2a10.若-5b

=0是二元一次方程,则a=______,b=______.

a1是关于a,b的二元一次方程ax+ay-b=7的一个解,则代数式x2+2xy+y2

b2-1•的值是_________.

x111.写出一个解为的二元一次方程组__________.

y212.a-b=2,a-c=

19,则(b-c)3-3(b-c)+=________. 24x3x213.已知都是ax+by=7的解,则a=_______,b=______. 和y1y1114.若2x5ayb+4与-x1

-2b

y2a是同类项,则b=________.

15.方程mx-2y=x+5是二元一次方程时,则m________. 16.方程组三、解答题

17.解方程组(每小题4分,共8分)

s2t3st=4的解为________. 322xy5(1)7x3y20

x3y3 (2)255(x2y)4

18.已知y=3xy+x,求代数式

19.已知方程组小题6分)

2x3xy2y的值.(本小题6分)

x2xyy2x5y63x5y162004

的解相同.求(2a+b)的值.(本与方程组axby4bxay820.已知x=1是关于x的一元一次方程ax-1=2(x-b)的解,y=1是关于y•的一元一次方程b(y-3)=2(1-a)的解.在y=ax2+bx-3中,求当x=-3时y值.(本小题6分)

ax5y15①x321.甲、乙两人同解方程组 时,甲看错了方程①中的a,解得,

② 4xby2y1乙看错了②中的b,

x5b(本小题6分) 试求a2006()2007的值.

10y4

22.某商场按定价销售某种电器时,每台可获利48元,•按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等.求该电器每台的进价、•定价各是多少元?(本小题7分)

23.一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50•个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,•多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?能配成多少张方桌.(本小题7分)

24.甲、乙二人在上午8时,自A、B两地同时相向而行,上午10时相距36km,•二人继续前行,到12时又相距36km,已知甲每小时比乙多走2km,求A,B两地的距离.(•本小题7分)

第八章

一、选择题

1.B 解析:②④是

2.C 解析:用加减法,直接相加即可消去y,求得x的值. 3.B 解析:解方程组可得x=7k,y=-2k,

然后把x,y代入二元一次方程2x+3y=6,即2×7k+3×(-2k)=6, 解得k=4.B

5.B 解析:正整数解为:3,故选B. 4x1x2 y4y16.C 解析:由方程组消去m,得到一个关于x,y的方程,化简这个方程即可. 7.C 解析:根据两个非负数互为相反数,判断两个非负数必定都是0, 所以有xy12x2 解得2xy30y12ab1a3, 解得2ba7b58.C 解析:把x=-2,y=1代入原方程组得∴(a+b)(a-b)=-16.

二、填空题

9.-2,-1 解析:根据二元一次方程的定义可得x,y的指数都是1,•

由二元一次方程定义,得2a5b1a2. 解得a3b1b110.24 解析:把a=1,b=-2代入原方程可得x+y的值,

把a=1,b=-2代入ax+ay-b=•7得x+y=5,因为x2+2xy+y2-1=(x+y)2-1, 所以原式=24.

2xy0(答案不唯一).

2xy4127312. 解析:由a-b=2,a-c=可得b-c=-,

282927再代入(b-c)3-3(b-c)+=.

4811.13.2 1 解析:本题既考查了二元一次方程的解的概念又考查了二元一次方程组的解法.分别将两组解法代入二元一次方程, 可得3ab7a2. 解这个方程组得2a11b7b114.-2 解析:本题涉及同类项的概念:所含字母相同,相同字母的指数也相同,• 由此可得5a=1-2b;b+4=2a,将两式联立组成方程组, 解出a,b的值,分别为a=1,b=-2,•故ba=-2. 15.≠1

s2t4s43解析:解方程组16. 即可. t43st42三、解答题

①2xy517.解:(1) ② ①×3得,6x-3y=15 ③

7x3y20x5 ②-③,得x=5.将x=5代入①,得y=5,所以原方程组的解为.

y55x15y6① (2)原方程组变为 5x10y4② 222①-②,得y=.将y=代入①,得5x+15×=6,x=0,

555x0所以原方程组的解为2.

y518.解:因为y=3xy+x,所以x-y=-3xy. 当x-y=-3xy时,

2x3xy2y2(xy)3xy2(3xy)3xy3.

x2xyy(xy)2xy3xy2xy5解析:首先根据已知条件得到x-y=-3xy,再把要求的代数式化简成含有x-y的式子,

然后整体代入,使代数式中只含有xy,约分后得解.

2x5y6x219.解:因为两个方程组的解相同,所以解方程组 解得3x5y6y2ab2a1代入另两个方程得,∴原式=(2×1-3)2004=1. 解得ab4b35aa12(1b)3解方程组得20.解:将x=1,y=1分别代入方程得

b(13)2(1a)b2352所以原式=x2+x-3.当x=-3时,•

3352原式=×(-3)2+×(-3)-3=15-2-3=10.

33x321.解:把代入方程②,得4×(-3)=b·(-1)-2,

y1x5解得b=10.把

y4代入方程①,得5a+5×4=15,解得a=-1,

所以a2006+(b200710)(1)2006()2007=1+(-1)=0. 101022.解:设该电器每台的进价为x元,定价为y元. 由题意得yx48,x162,. 解得6(0.9yx)9(y30x)y210.答:•该电器每台的进价是162元,定价是210元.

解析:打九折是按定价的90%销售,利润=售价-进价. 23.解:设用xm3木料做桌面,ym3木料做桌腿.由题意,得

(2)6×50=300(张).答:用6m3木料做桌面,4m3木料做桌腿恰好能配成方桌,能配成300张方桌.解析:问题中有两个条件:

①做桌面用的木料+做桌腿用的木料=10;②4×桌面个数=桌腿个数.

24.解:设A、B两地相距xkm,乙每小时走ykm,则甲每小时走(y+2)km. 根据题意,•得

xy10x6, 解得450x300yy4.2(yy2)x36x108.答:略. 解这个方程组得4(yy2)x36y17

因篇幅问题不能全部显示,请点此查看更多更全内容