IsBiodegradabilityaDesirableAttributeforDiscardedSolidWaste?PerspectivesfromaNationalLandfillGreenhouseGasInventoryModel
JamesW.Levis*andMortonA.Barlaz
DepartmentofCivil,Construction,andEnvironmentalEngineering,NorthCarolinaStateUniversity,CampusBox7908,Raleigh,NorthCarolina27695-7908,UnitedStates
SupportingInformationb
ABSTRACT:Thereisincreasinginterestintheuseofbiodegradablematerialsbecausetheyarebelievedtobe“greener”.Inalandfill,thesematerialsdegradeanaerobicallytoformmethaneandcarbondioxide.Thefractionofthemethanethatiscollectedcanbeutilizedasanenergysourceandthefractionofthebiogeniccarbonthatdoesnotdecomposeisstoredinthelandfill.Alandfilllife-cyclemodelwasdevelopedtorepresentthebehaviorofMSWcomponentsandnewmaterialsdisposedinalandfillrepresentativeoftheU.S.averagewithrespecttogascollectionandutilizationoverarangeofenvironmentalconditions(i.e.,arid,moderatewet,andbioreactor).Thebehaviorofmaterialsthatbiodegradeatrelativelyfast(foodwaste),medium(biodegradablepolymer)andslow(newsprintandofficepaper)rateswasstudied.Poly(3-hydroxybutyrate-co-3-hydroxyoctanoate)(PHBO)wasselectedasillustrativeforanemergingbiodegradablepolymer.Globalwarmingpotentials(GWP)of26,720,À1000,990,and1300kgCO2ewetMgÀ1wereestimatedforMSW,foodwaste,newsprint,officepaper,andPHBO,respectivelyinanationalaveragelandfill.Inastate-of-the-artlandfillwithgascollectionandelectricitygeneration,GWP’sofÀ250,330,À1400,À96,andÀ420kgCO2ewetMgÀ1wereestimatedforMSW,foodwaste,newsprint,officepaperandPHBO,respectively.Additionalsimulationsshowedthatforahypotheticalmaterial,aslowerbiodegradationrateandalowerextentofbiodegradationimprovetheenvironmentalperformanceofamaterialinalandfillrepresentativeofnationalaverageconditions.
’INTRODUCTION
TheU.S.EnvironmentalProtectionAgency(EPA)estimatesthat135millionmetrictons(1t=1Mg)ofmunicipalsolidwaste(MSW)werediscardedinU.S.landfillsin2008.1Whileeffortstoreducewastegenerationandtomanagewastebyrecyclingandcompostingwillcontinue,landfillsremainasignificantcompo-nentofwastemanagementinfrastructure.Itisthereforeimpor-tanttounderstandtheimpactsoflandfilldisposalonamaterial’senvironmentalperformance.Therearecurrently503landfillsintheU.S.atwhichthegasisconvertedtoenergy2andanestimatedadditional545landfillsatwhichenergyrecoveryisviable.3Nonetheless,asaresultofgasgeneratedpriortoinstallationofgascollectionsystems,andfugitiveemissions,landfillsareestimatedtobethesecondlargestsourceofanthropogenicmethaneemissionsintheU.S.4Recently,effortshavebeenmadetodevelopbiodegradablematerialsbecausetheyareassumedtobe“greener”alternatives.Poly(lactic)acid(PLA),whichismanufacturedfromagriculturalproductsasopposedtopetro-leum,isonesuchmaterialthathasfounduseindisposablecups,cutlery,andotherfoodserviceapplications.5Whilematerialbiodegradabilitywillreducethevolumeoccupiedinalandfill,anevaluationoftheenvironmentalperformanceofanewmaterialmustincludetheproduction,use,anddisposalphasesoftheproductlife-cycle.Inrecentwork,theeffectoftherateofmethanegenerationfromindividualMSWcomponentswascombinedwithahypotheticalscheduleforlandfillgascollec-tiontoillustratetheimportanceofincorporatingwaste
r2011AmericanChemicalSociety
component-specificdecayratesinanalysesofthefractionofgeneratedmethanethatiscollected.6Totheextentthatenvironmentalperformanceattheend-of-lifeisafactorinthedevelopmentandselectionofmaterialstobeusedinvariousproducts,manufacturersmusthaveanunder-standingofthenationaldisposalinfrastructureasopposedtoperformanceinaspecificlandfill.Theobjectiveofthisstudywastodevelopandparametrizealandfilllife-cyclemodeltorepresentnationalaverageconditions.Themodelwasparametrizedtorepresentlandfillswithandwithoutgascollection,andlandfillsthatflareorusethecollectedgasbeneficially.Landfillsoperatedunderarangeofenvironmentalconditions(i.e.,arid,moderate,wet,andbioreactor)wereconsideredandthemodelwasusedtostudythebehaviorofmaterialsthatbiodegradeatrelativelyfast(foodwaste),medium(biodegradablepolymer)andslow(newsprintandofficepaper)rates.ThegoalofthisstudyistoprovideguidancetomanufacturersonenvironmentalperformanceduringlandfilldisposalthatreflectsU.S.landfillinfrastructure.
’MODELINGAPPROACH
Alandfilllife-cyclemodelwasdevelopedtoestimategreen-housegas(GHG)emissionsattributabletothedisposalof
Received:March2,2011Accepted:May13,2011Revised:May10,2011Published:May27,2011
5470
dx.doi.org/10.1021/es200721s|Environ.Sci.Technol.2011,45,5470–5476
EnvironmentalScience&Technology
Table1.PropertiesforMixofU.S.LandfillFacilities
annualprecipitation
landfilltypearidmoderatewetbioreactor
adecayrate(yr)0.02a0.0380.0570.12
daaÀ1percentofwastereceived
20.028.941.110.0
bno.ofyearsgasiscollectedforenergygeneration
100765939
cpercentofgasgenerated
in100years829499.9
(cm)<51
a51 4bFromU.S.EPA,2010.Themassofwastedisposedinbioreactorlandfillswasassumedtobe10%.Thismasswassubtractedfromthemassdisposedinmoderateandwetlandfillsinequalproportions,afterwhichthefractiondisposedineachcategorywascorrected.TheoriginalmassdisposalbycategorywasadoptedfromU.S.EPA,2010.4cCriteriatoestimatethisvaluearedescribedinthetext.dJudgmentbasedonvaluesreportedinBarlazetal.,201020andTolaymatetal.,2010.21biodegradablematerialsinlandfills.ThemodelwasusedtoanalyzethebehaviorofMSWandarangeofillustrativematerialsthatexhibitvaryingbiodegradationratestostudytheeffectofbiodegradabilityonenvironmentalperformance.BothpointestimatesandMonteCarloanalyseswerecon-ducted.ForMSW,thewastecompositionwasbasedonU.S.EPA,2009.1LandfillModel.Anestimateoftheglobalwarmingpotential(GWP)attributabletothedisposalofmaterialsinalandfillrequiresconsiderationoflandfillconstruction,operations,finalcoverplacement,gasandleachatemanagement,andlong-termmaintenanceandmonitoring(eq1). totalGWP¼constructionCO2þoperationsCO2þfinalcoverCO2 þleachatemgmtCO2þlongtermmonitoringCO2þ25ÂfugitivemethaneÀelectricityoffsets44ÀCstoredð1Þ 12 Eachofthetermsineq1areinmassunits(kg).GHGemissionsassociatedwithallaspectsofthelandfillexceptgasmanagementandcarbonstoragehavebeenshowntobesmallrelativetotheseparameters.Assuch,emissionsforlandfillconstruction(1.4kgCO2eMgÀ1),operations(3.9kgCO2eMgÀ1),finalcoverplacement(1.2kgCO2eMgÀ1),leachatemanage-ment(0.31kgCO2eMgÀ1)andlong-termmaintenance(0.06kgCO2eMgÀ1)wereadoptedfromCamobreco,1999.7TheGHGemissionsandsinksassociatedwithgasmanagementandthestorageofbiogeniccarbonweredevelopedinthisstudywithcarbonstoragefactorsadoptedfromStaleyandBarlaz,2009.8LandfillgasgenerationwasmodeledusingafirstorderdecaymodelasintheEPA’sLandGEMmodel.9Thedecayrate(k)isdependentonclimateandlandfilloperationstrategy(traditionalvsbioreactor).Thus,thefractionofwastedisposedinU.S.landfillswasdividedintothreeclimatecategoriesfortraditionallandfills(arid,moderate,wet)toreflectdifferencesinkasso-ciatedwithmoisture.Bioreactorlandfills,inwhichleachateandsometimesotherliquidsarerecirculatedtoincreasek,wereconsideredasafourthcategory.ThemassoftotalwastedisposedintoeachlandfillcategorywasadoptedfromU.S.EPA,2010.4Table1presentstheparametersassociatedwitheachlandfillcategory.Themassofwastedisposedinbioreactorlandfillswasassumedtobe10%ofthemassdisposedinU.S.landfillsandthismasswassubtractedfromthemassdisposedinmoderateandwetlandfillsasdescribedinTable1.Ineachofthethreetraditionallandfillcategories,therearelandfillsthat(1)donotcollectgas,(2)flarethegas,and(3)usethegasforenergy.Thepercentageof wasteinlandfillswithgascollectionandthepercentageoftheselandfillswithenergyrecoverywerecalculatedusingEPAesti-matesformethanegeneration(12.4millionMg),flared(3.3millionMg),andcombustedforenergy(3.3millionMg).4Basedontheassumptionthatlandfillscollect75%ofthegeneratedgas,theEPAGHGInventory4estimatesthat69%oflandfilledwastewasdisposedinlandfillswithgascollection(flaredorconvertedtoenergy)and50%ofthatwastewasdisposedinlandfillswithenergyrecovery.Itwasassumedthatallbioreactorlandfillswereincludedinthe69%oflandfillsthatcollectgas,whichresultsinanestimatethat66%ofwasteintraditionallandfillsisdisposedinlandfillswithgascollection.Itisrecognizedthatthereisun-certaintyintheseestimatesandthesensitivityoftheseassump-tionsisexploredwiththeresults. IncontrasttoLandGEM,9inwhichMSWistreatedasonesubstrate,thekandmethaneyield(L0)ofeachMSWcomponentwasmodeledseparatelytostudytheinfluenceofbiodegradabilityonmethanegenerationandsubsequentcollectionandemissions.Component-specificdecayrateswerecalculatedasdescribedinDelaCruzandBarlaz,2010.6Calculationofcomponent-specificdecayratesrequiresspecificationofabulkMSWdecayrateasgiveninTable1. Forwasteinlandfillsthatutilizethemethanebeneficially,itwasnecessarytoestimatetheperiodoverwhichtherewassufficientgastooperateenergyrecoveryequipment.First,itwasassumedthatallrecoveredmethaneisconvertedtoelectricalenergyalthoughinpracticesomegasisuseddirectlyinindustrialboilersalongwithotherbeneficialuses.Second,itwasassumedthatlandfillscouldonlygenerateelectricitywhilethegasflowratewasabove0.236m3sÀ1(500ft3minÀ1)at50%methane.Foreachlandfillcategory,thelengthoftimethatthelandfillgasflowwasabovethisthresholdwasdeterminedbymodelingmethanegenerationfora2100MgdayÀ1landfillthatacceptedwastefor40yearsatthedecayratesgiveninTable1.Asthedecayratedecreases,thelengthoftimeoverwhichgasgenerationisabovethe0.236m3sÀ1thresholdincreasesandofcourse,thistimewouldincreaseifthewasteacceptanceratewashigher.Allcalculationswerebasedona100yeartimehorizonatwhichpointalandfillwouldhaveproducedmostofitsmethane(Table1).Forlandfillsthatutilizethegasforenergy,thegasproducedataratelowerthantheaforementionedthresholdwasassumedtobeflaredbetweenthethresholdyearandyear100.Landfillgascollectionsystemsareinstalledinpartbasedontheageofthelandfillcell.Thismeansthatwasteburiedearlierinthecell’slifewillbeundergascollectionforlesstimethanwasteburiedlaterinthecell’slife.Itisthereforenecessarytotemporallyaveragethecollectionefficiencyforeachyearofcelloperation. 5471 dx.doi.org/10.1021/es200721s|Environ.Sci.Technol.2011,45,5470–5476 EnvironmentalScience&Technology Table2.MaterialPropertiesforFoodWaste,Newsprint,OfficePaper,PHBO,andMSW materialfoodwastenewsprintofficepaperPHBOMSW acmoisturecontent(%) 7066021 fielddecayrate(yrÀ1)a0.1440.0330.0290.072N/A dmethaneyield(m3dryMgÀ1)b30074.321734167.2 carbonstoragefactor(kgCdryMgÀ1)b8042050356125 6Thefield-scaledecayratesforfoodwaste,newsprint,andofficepaperwereadoptedfromDelaCruzandBarlaz,2010andarebasedonadecayrateof0.04yrÀ1forMSW.ThedecayrateforPHBOwasestimatedasdescribedinthetext,andalsobasedonadecayrateof0.04yrÀ1forMSW.bThemethaneyieldsandcarbonstoragefactorsforMSW,foodwaste,newsprintandofficepaper,wereadoptedfromStaleyandBarlaz,2009.8ThecorrespondingvaluesforPHBOwereestimatedasdescribedinthetext.cValueswerecalculatedastheweightedaverageofthecomponentspecificvaluesformoisturecontent,methaneyieldandcarbonstoragefactor.ComponentspecificdataandwastecompositionaregiveninSITableS1.dAbulkMSWdecayrateisnotmeaningfulbecausemethanegenerationcurvesforindividualwastecomponentsweresummed. Gascollectionschemeswerebasedontheassumptionthatatypicalcelllifeis5yearsandthatnogascollectionisinplaceforthefirsttwoyearsofcelloperation(6moforbioreactors).Further,thecollectionefficiencypriortocellclosureandintermediatecoverinstallationis50%(i.e.,years3À5,or0.5À3yearsforabioreactor).Aftercellclosureattheendofyear5,thecollectionefficiencyisassumedtobe75%.Itisfurtherassumedthat10yearsafterfinalwasteplacement(i.e.,15yearsafterinitialwasteplacement),afinalcoverisinstalledandthegascollectionefficiencyincreasesfrom75%to95%.Thisgascollectionsysteminstallationschedulewasusedtocalculateatemporallyaveragedgascollectionefficiencywhichisthevolumeofgascollecteddividedbythevolumeofgasproducedover100yearsasitappliestothe5yearsofwasteburiedinasinglelandfillcell.AllofthegascollectionsystemdefaultvaluescanbevariedinthemodelasdescribedwiththeResultsandDiscussion. SomefractionoftheuncollectedmethaneisoxidizedtoCO2asitpassesthroughthelandfillcover.TenpercentoxidationwasassumedasrecommendedintheU.S.EPA’sAP-42database10andasusedintheU.S.GHGinventory.4Itislikelyconservativeasotherstudiesestimatemethaneoxidationof22À55%.11Whenelectricalenergyisrecovered,itisassumedtooffsetcoalandnaturalgasgenerationat72.5%coaland27.5%naturalgas,whichrepresentstheadjustedproportionofeachfuelonthenationalgrid.12ThisleadstoaCO2offsetof1.02kgCO2ekWhÀ1.Methanewasassumedtobeconvertedtoelectricityusingaheatrateof11.6MJ/kWh,whichwasdevelopedfromvendorliterature.Finally,themassofmethanewasmultipliedby25toexpressasCO2eusingthe100yearwarmingpotential.13ModelingofIndividualWasteComponents.InadditiontoMSW,theanalysiswasconductedforfourindividualmaterialstoillustratetheeffectsofdecayrateandmethaneyieldonGHGemissionsfromwastematerials.Thefourmaterialswerefoodwaste,newsprint,officepaper,andpoly(3-hydroxybutyrate-co-3-hydroxyoctanoate)(PHBO)(C13H21O4).ThepropertiesforeachmaterialareshowninTable2.SeveralmaterialpropertiesforPHBOhadtobedevelopedincludingthemethaneyield,decayrate,andcarbonstoragefactor(CSF).ThetheoreticalmethaneyieldforPHBOwascalculatedtobe755mLgPHBOÀ1usingtheBuswellequationascitedinParkinandOwen,1986.14Thisvaluewasadjustedusingtheaveragemineralizationof45.2%measuredinareactorstudy,15resultinginaneffectiveultimateyieldof341mLgPHBOÀ1.Equation2wasusedtoestimateadecayrateforPHBOthatisapplicableatfield-scale Table3.DecayRateForMSW,PHBO,andtheRatiobetweenthem laboratory-scaleMSWdecayrate(yr) reactor4areactor5reactor6average aaaÀ1blaboratory-scalePHBOdecayrate(yrÀ1)b20.918.018.619.2 15bkphbo/kmsw1.921.701.851.83 10.910.610.110.5 ReactornumbersasassignedinFederleetal.,2002.CalculatedfromdatainFederleetal.,200215asgivenintheSI(FiguresS1ÀS8). usinglaboratory-scaledecayratesforMSWandPHBO. kf,phbo¼kf,MSW k1,phbok1,MSW ð2Þ where,kf,phboisthefield-scaledecayrateofPHBO,kf,MSWisthefield-scaledecayrateofMSW,kl,phboisthelaboratory-scaledecayrateofPHBO,andkl,MSWisthelaboratory-scaledecayrateofMSW.Thelaboratory-scaledecayratesforPHBOandMSWwereestimatedbyregressionanalysisofthedatainFederleetal.,2002.15ForMSW,theregressionwasperformedonthelogofthedifferencebetweentotalmethaneproductionandeachgenera-tionvalue(FiguresS1ÀS4oftheSupportingInformation(SI)).ThedecayrateforPHBOwasdeterminedbyanalyzingthemineralizationrate.SincePHBOmineralizationstabilizedmuchsoonerthantotalCH4,theregressionwasonlyperformedonthedatauptoday77.9atwhichtimedecayhadessentiallyceased(SIFiguresS5ÀS8).ItshouldbenotedthatthisisanupperestimateforthedecayrateofPHBO,sincethePHBOwasgroundbeforetestingandtheothermaterialswereshreddedtoabout2Â5cm.Table3showsthelaboratorydecayratesforMSW,PHBOandtheratiobetweenthem.TheratiowasusedtoestimatethedecayrateofPHBOinactuallandfillenvironmentsforeachlandfillcategory(Table2).ACSFforPHBOwasdeterminedusingitscarboncontent(7kgCMgÀ1)andreportedmineralization(45.2%),resultinginanaverageCSFof356kgCMgPHBOÀ1witharangeof307to381basedonthereactordata.15SensitivityAnalysis.Manyoftheinputvaluesinthismodelareuncertain.Forexample,itisdifficulttoestimatethefractionofwastedisposedinlandfillswithgascollection(pointestimate69%),aswellasthefractionofthiswastethatisinlandfillswithenergyrecovery(pointestimate50%).Incontrasttothesepointestimates,datavoluntarilysubmittedtotheLandfillMethaneOutreachProgram(LMOP)database2suggestthat84%ofwaste 5472 dx.doi.org/10.1021/es200721s|Environ.Sci.Technol.2011,45,5470–5476 EnvironmentalScience&Technology isdisposedinlandfillswithgascollection,and66%ofthiswasteisinlandfillswithenergyrecovery.ThesenumbersarelikelyhigherbecausetheLMOPdatabaseconsistsoflandfillsthatvoluntarilysubmitinformation.Largerlandfillsandlandfillsthathavestate-Table4.TemporallyAveragedLandfillGasCollectionEfficiencies.acollectionefficiency(%) wasteage(yr) 1234567101112131415g16 aof-the-artgascollectionsystemsaremostlikelytosubmitdataandthusbeoverrepresented. A10000iterationMonteCarloanalysiswasperformedonseveralmodelinputs.TheinputsincludedintheanalysisandthevaluesusedfortheirrespectivetriangulardistributionsaregivenintheResultsandDiscussionsection. traditionallandfill 0456065707575757575757983879195 bioreactorlandfill 25556065707575757575757983879195 ValuerepresentsthebehaviorofanaveragemassofMSWinalandfillwithgascollection.ThecalculationprocedureisdescribedintheModelingApproachsection.Thesevaluesarebasedonanassumedschedulefortheinstallationofagascollectionsystem,alandfillcelllifeof5yearsandtheinstallationoffinalcover15yearsafteracellopensasdescribedinthetext. ’RESULTSANDDISCUSSION ThecalculatedtemporallyaveragedlandfillgascollectionefficienciesforwastedisposedintraditionalandbioreactorlandfillsthatcollectgasareshowninTable4.TheresultsinTable4reflectanaverageMgofwasteasopposedtothefirstMgburied.Thus,eventhoughitwasassumedthatnogascollectionisinstalledatatraditionallandfillfortwoyears,wastedisposedinyeartwocomesundersomecollectionwithinayearofburial;hencethegascollectionefficiencyforwasteburiedinyeartwoisnonzero. TheGHGemissionsassociatedwithfoodwaste,newsprint,officepaper,PHBO,andMSWareshowninFigure1abylandfillsubprocess.Temporallyaveragedcollectionefficiencies,definedastotalmethanecollection/totalmethaneproductionwere51,41,56,57,and49%forMSW,foodwaste,newsprint,officepaperandPHBO,respectively.Thesevaluesarerelativelylowduetotheestimatethat31%ofwasteisburiedinlandfillsthatdonotcollectgas.Thecollectionefficiencyvariesasafunctionofdecayrateasmaterialswithahigherdecayratewillproducemoregaspriortotheinstallationofgascollectionwhilewastethatdegradesmoreslowlywillhavegreatercollectionefficienciessincemoreofthegaswillbeproducedaftercollectionsystemsareinplace.Methaneoxidationwasassumedtoreducefugitiveemissionsby10%inthebasecase.Biogeniccarbonstorageisalsoasignificantcomponentofthecarbonfootprint(Figure1a)whiletheenergyoffsetsreducetheGWPfromthefugitivemethaneemissionsby6À11%. Figure1.GreenhousegasemissionsforeachwastecomponentandaverageMSWbyprocessandexpressedperwetMg.Thesedatarepresent(a)anationalaveragelandfillandthusreflectlandfillswithandwithoutgascollectionandenergyrecoveryand(b)astate-of-the-artlandfill.FossilCO2eemissionsfromlandfillconstruction,operations,closure,postclosureandleachatemanagementleadtoanadditional6.9kgCO2eMgÀ1thatisincludedinthetotalforeachofthewastestreams. 5473 dx.doi.org/10.1021/es200721s|Environ.Sci.Technol.2011,45,5470–5476 EnvironmentalScience&Technology Table5.InputsandTriangularDistributionParametersUsedintheMonteCarloAnalysis input wastediscardedinlandfillswithgascollection(%)wasteinlandfillswithgascollectionthatrecoverenergy(%)timeuntilfinalcoverisinplaceafterinitialwasteplacement(yr)gascollectionefficiencyunderfinalcover(%)oxidationrate(%)landfilldecayrate(yrÀ1)aridmoderatewetbioreactor acurrent69501595100.020.0380.0570.12 minimuma60401285100.015d0.029d0.043d0.09dmaximuma84b66b209840c0.025d0.048d0.071d0.15dValuesbasedonjudgmentunlessotherwisestated.bMaximumvaluebasedonvoluntaryreportsinLMOPdatabase.2cApublishedreviewsuggestsameanof36%oxidation.11dThedecayrateswerevariedby(25%. TheresultsinFigure1acontrastconsiderablywiththeresultsforalandfillthatrepresentsthestate-of-the-artasopposedtoanationalaverage.Resultsforascenarioclosertoastate-of-the-artlandfillarepresentedinFigure1bwhereitisassumedthatalllandfillshavegascollectionsystemsandconvertthemethanetoelectricalenergy.Themethanecollectionschedule,celllifeandoxidationratesremainasforFigure1a.Asexpected,collectedmethaneandtheenergyoffsetsincrease;withenergyoffsetsreducingtheCO2efromthefugitivemethaneemissionsby25À78%. TheCO2esignatureofPHBOisinferiortothatofothermaterialsinnationalaveragelandfills,butnotinstate-of-the-artlandfills.ThisinferiorityinthebasecasemaybecounterintuitiveasthemethaneyieldsoffoodwasteandPHBOarecomparableonadrybasis,andthePHBOdecayrateislowerthanthatoffoodwaste(Table2).However,theresults(Figure1)areexpressedonawetbasisandthemethaneyieldsare90,70,200,and340m3wetMgÀ1forfoodwaste,newsprint,officepaperandPHBO,respectively.Thus,thehighermethaneyieldforPHBOonawetbasisincreasesCO2eforanationalaveragelandfill.Forastate-of-the-artlandfill,theCO2esignatureforPHBOissecondonlytonewsprintbecauseitsdecayrateisabouthalfthatoffoodwaste,somoreofthegasgeneratedfromPHBOcanbecollected.ItalsohasthesecondhighestCSFofanymaterialanalyzed,whichleadsittohavenetnegativeCO2e. Resultsarepresentedbylandfillcategory(arid,moderate,wet,bioreactor)inSIFiguresS9ÀS12.Ingeneral,thevolumeofcollectedmethaneincreasesasthedecayratesdecreasesotheenvironmentalperformanceofwastegeneratedinaridregions,whichwasestimatedas20%ofthenationaltotal,ishighest.TheGHGperformanceofbioreactorlandfillsissuperiortothatofmoderateandwetlandfillsduetotheassumptionthatallbioreactorscollectgas.Onelimitationtothemodelingapproachisthataconstantmethaneoxidationfactorisassumedwhichsuggeststhatthemassofoxidizedmethaneincreasesasfugitiveemissionsincrease.Inreality,thefractionoftheuncollectedmethanethatisoxidizedwilldecreaseasfugitiveemissionsincreasebecauseoxygenavailabilityisalimitingfactorinmethaneoxidationandalowermethanefluxtranslatestothepotentialtomeetahigherfractionofthestoichiometricoxygendemand.16AMonteCarloanalysiswasperformedbyvaryingtheparam-eterspresentedinTable5.Thecumulativedistributionfunc-tions(CDFs)fortheGHGemissionsassociatedwitheachwastecomponentandMSWdevelopedfromtheMonteCarloanalysis Figure2.Cumulativedistributionfunctionsforeachmaterial.RangesusedforeachuncertaininputaregiveninTable5.ONP=oldnewsprint,MSW=municipalsolidwaste,FW=foodwaste,OFFP=officepaper. arepresentedinFigure2.SummarystatisticsforeachCDFareshowninTableS2.PHBOhasthegreatestrangeamongthewastestreams(1600kgCO2e)becauseithasthehighestmethaneyieldwhichtranslatestomoreopportunityforchangesincollection,beneficialuse,andoxidationtoaffectthefinalresults.Similarly,officepaperhasthesecondhighestmethaneyieldandthesecondgreatestrange(930kgCO2e).SpearmanrankcorrelationsweredeterminedbetweenmajorinputsandthenetCO2eassociatedwithMSWdisposal(Table6).Theoxida-tionrateshowsthegreatestcorrelation,whichispartiallyduetoitslargerange.Furtherresearchintotheboundsofthisrange,andamodelingapproachthatincorporateschangesinmethaneoxidationasafunctionofthecontrollingvariables(soilmoisturecontent,temperature,porosityandmethaneflux)couldreducetheuncertainty.Whileworkontheseissuesisongoing,itappearsprematuretoincorporateinthissnapshotoftheU.S.landfillinfrastructure.Thefractionofwastedisposedinlandfillsthatcollectgasisthesecondmostsensitivevariablewhilethesensitivityoflandfilldecayratesvariesbasedontheamountofwasteineachlandfillcategory.Heretoo,uncertaintyexistsandwhenthedecayrateswerevariedby(50%,asopposedto(25%,theSpearmanrankcorrelationcoefficientsincreasefrom0.066to0.078,0.075to0.14,0.081to0.18and0.041to0.066forarid,moderate,wet,andbioreactordecayrates,respectively. DecayRateAnalysis.Thesignificanceofthedecayrateandmethaneyieldisfurtherillustratedbyaparametricanalysis.Ahypotheticalbiogenicpolymerconsistingof50%carboninanoxidationstateofacarbohydratewasanalyzedatfourdegreesofmineralization,withdecayratesvaryingfrom0.001to1.0yrÀ1. 5474 dx.doi.org/10.1021/es200721s|Environ.Sci.Technol.2011,45,5470–5476 EnvironmentalScience&Technology Table6.SpearmanRankCorrelationCoefficientsbetweenUncertainInputsandtheNetCO2eAssociatedWithMSWDisposal Spearman input Correlationoxidationrate À0.749percentageofwastediscardedinlandfillsthatcollectgasÀ0.577gascollectionefficiencyunderfinalcover À0.166timeuntilfinalcoverisinplaceafterfinalwasteplacement0.117wetlandfilldecayrate0.081moderatelandfilldecayrate 0.075percentageofwastediscardedinlandfillswithcollectionthatÀ0.066 recoverenergyaridlandfilldecayrate0.066bioreactordecayrate 0.041Table7.MaterialPropertiesforHypotheticalBiogenicPolymer percentmineralization L0(m3CH4MgÀ1)aCSF(kgCMgÀ1)a100465066307170331533350 0 500 aorganicValuesthatcarbon50%carbonwerecalculateddioxide. oftheandforahypotheticalpolymerthatcontains50% reactiveisincarbontheoxidationwillbeconvertedstateofacarbohydrate,tomethaneandmeaning50%toThe0%mineralizationcasesimulatesarecalcitrantbiogenicmaterial.ThemethaneyieldsandCSFsforthishypotheticalpolymeraregiveninTable7.Theresultsindicatethatdecreasedmaterialdecayratesanddecreasedmineralizationleadtode-creasedCOaveragelandfill,2e(Figure3).Theseresultssuggestthatforanationalinwhichnotallgasiscollectedandconvertedtoenergy,optimalperformancewouldbeachievedforbiogenicmaterialsthatarerecalcitrantunderanaerobicconditions. EnvironmentalImplications.Thedescribedapproachpro-videsaframeworkforaproducertoconsidertheGHGperfor-manceofamaterialduringthedisposalphase.Theinputparameterscouldbeadjustedtoreflectregionsorcountrieswithalternatepracticesonlandfillgas.Inaddition,theanalysiscouldbeextendedtoreflectforexample,thatanestimated18.9%ofU.S.nonrecoveredMSWisdisposedbywaste-to-energy(WTE)combustion.1AnalysesofWTEhavebeenpresentedpreviously.17À19Similarly,foraproductsuchasabiodegradablebagthatisusedstrictlyforyardwaste,ascenarioinwhichasignificantpercentageoftheproductismanagedbycompostingoranaerobicdigestioncouldbedeveloped.Sotoo,thebehaviorofamaterialwheresomefractionisdiscardedaslittercouldbeconsidered.ThescenariopresentedhereisapplicabletoabiodegradablematerialthatismanagedwithMSW,themajorityofwhichisdisposedinlandfillsintheU.S.TheresultsshowthatarapidlydegradablematerialincreasesCO2erelativetoamoreslowlydegradableorrecalcitrantmaterial. Ultimately,materialdevelopmentandselectionshouldcon-sideremissionsassociatedwithmaterialproduction,potentialdifferencesintheusephasethatcouldbeattributedtothematerial,andend-of-lifemanagement.Ifemissionsforthe Figurehypothetical3.Themineralization. carbohydrate-basedeffectofdecaybiogenicrateonpolymertheGWPwithassociatedvaryinglevelswithofaproductionofabiodegradablematerialarecomparableorhigherthanemissionsassociatedwithmanufacturingamaterialfrompetroleum-basedfeedstocks,anddisposalemissionsarehigherforthebiodegradablematerialasillustratedhere,thenitishardtorationalizeasuggestionthatthebiodegradablematerialisthepreferablealternative,assumingofcourse,theavailabilityofpetroleum-basedfeedstocks. ’ASSOCIATEDCONTENT b SSupportingInformation. Wastecomposition,summary statisticsforMonteCarloanalysis,methaneproductiondatafromPHBObiodegradationstudy,derivationofmineralizationfactor(PHBO)anddecayrates(MSWandPHBO)basedonreactordata,andCO2eforlandfillsineachcategory(arid,moderate,wet,bioreactor).ThismaterialisavailablefreeofchargeviatheInternetathttp://pubs.acs.org. ’AUTHORINFORMATION CorrespondingAuthor *Phone:(919)515-0887;fax:(919)515-7908;e-mail:jwlevis@ncsu.edu. ’ACKNOWLEDGMENT ThisresearchwassupportedbyProcter&Gamble.J.W.L.wassupportedinpartbyaFiessingerFellowshipfromtheEnviron-mentalResearchandEducationFoundation.’REFERENCES United(1)ResourceStatesMunicipalDetailedSolidTablesWasteandGeneration,FiguresforRecycling,2008;U.S.andEPA,DisposalOffiincethewww.epa.gov/waste/nonhaz/municipal/pubs/msw2008data.pdfConservationandRecovery:Washington,DC,2009;http://of(accessedEPA(2)2010;OffiLandNovemberceoffillResourceMethane11,ConservationOutreach2010). Program:andRecovery:OperationalWashington,Projects;U.S.DC,(accessedhttp://www.epa.gov/lmop/projects-candidates/operational.html08-010;(3)AnNovemberwww.epa.gov/osw/nonhaz/municipal/pubs/msw07-rpt.pdfU.S.overviewEPAOof11,ffiland2010). ceoffiSolidllgasWaste:energyinWashington,theUnitedStatesDC,2007;,EPAhttp://530-R-November2008(4)www.epa.gov/climatechange/emissions/downloads10/US-GHG-Inventory-,EPAInventory11,2010). (accessed430-R-10-006;ofU.S.GreenhouseU.S.EPA:GasWashington,EmissionsDC,andSinks:2010;http://1990À2010_Report.pdf(accessedNovember11,2010). 5475 dx.doi.org/10.1021/es200721s|Environ.Sci.Technol.2011,45,5470–5476 EnvironmentalScience&Technology processes(5)Datta,2006andR.;technologiesHenry,M.—LacticAreview.acid:RecentJ.Chem.advancesTechnol.inBiotechnol.products,speci(6),81De,1119–1129. Environ.ficlandlafiCruz,llF.B.;Barlaz,M.A.Estimationofwastecomponent-Rousseau,(7)Camobreco,Sci.Technol.decay2010rates,using44,4722laboratory-scale–4728. decompositiondata.solidwasteC.;landRathle,V.;fill.WasteJ.Ham,Life-cycleR.;Barlaz,Manage.Res.inventoryM.;1999,17ofRepa,E.;Felker,M.;,394amodern–municipalin(8)methanetheStaley,unitedB.yield.statesF.;Barlaz,M.A.Compositionofmunicipal408. solidwasteJ.Environ.andEng.implications-ASCE2009for,carbon135,901sequestrationandGuide(9)opment:;LandEPA-600/R-05/047;fillGasEmissionsU.S.ModelEPA,(LandGEM)OfficeofResearchVersion–909. 3.02User’sO(10)APWashington,andDevel-42:DC,2005. Vol.fficeofResourceSolidConservationWasteDisposalandRecovery:,5thed.,Washington,Chapter2;U.S.DC,1998;EPA,oxidation(11)I. Chanton,J.R.;Powelson,D.K.;Green,R.B.J.Environ.inQual.landfillcoversoils,Isa10%defaultvaluereasonable?Methaneepa.gov/egridweb/(12)eGRIDweb2009;U.S.,38,EPA:654–663. Washington,DC,2010;http://cfpub.Climate(13)ChangeFourth;Assessment(accessedCambridgeReportNovemberofthe11,Intergovernmental2010). Panelonof(14)wastewaterParkin,G.F.;Owen,UniversityW.F.FundamentalsPress:Cambridge,ofanaerobicU.K,digestion2007;Kemper,(15)Federle,sludges.ofJ.J.;Nuck,T.B.W.;J.Environ.A.;Barlaz,Eng.-ASCE1986,112,867–920.Schechtman,M.A.;L.Pettigrew,A.C.A.;Kerr,K.M.;andaliphaticAnaerobicbiodegradationGoldsmith,(16)poly(epsilon-caprolactone).polyesters:Poly(3-hydroxybutyrate-co-3-hydroxyoctanoate)Chanton,Biomacromolecules2002,3,813–822.capacityoflandD.;fiBarlaz,J.;Abichou,llsoils.M.WasteA.ObservationsT.;Langford,Manage.2011onC.;Spokas,K.;Hater,G.;,31the,914methaneÀoxidationbury(17)43,wasteKaplan,forcleanP.O.;electricityDecarolis,generation?J.;Thorneloe,Environ.S.IsitSci.better925. Technol.toburn2009oranswers(18)1711–,Sci.forMorris,1717. climateJ.Buryimpactsorburn&carbonnorthneutralamericapowerMSW?potential.LCAsprovidelife-cycle(19)Technol.Harrison,2010,WasteinventoryK.44,modelW.;7944Environ.Dumas,–7949. ofmunicipalR.D.;Barlaz,solidwasteM.A.;combustion.Nishtala,S.J.R.AirAI.;(20)Manage.AmericanBenson,Barlaz,Assoc.C.H.;M.Tolaymat,A.;2000Bareither,,50,993T.M.;C.A.;–1003. Yazdani,Hossain,R.A.;PerformanceSaquing,J.;ofMezzari,NorthJ.Environ.bioreactorEng.-ASCEland2010fills.,136II:Chemical,andbiologicalcharacteristics.Black,(21)Tolaymat,T.M.;Green,839R.–853. B.;Hater,G.R.;Barlaz,M.A.;forManage.municipalP.;Bronson,Assoc.solidD.;2010wastePowell,J.Evaluationoflandfillgasdecayconstant,60,91land–97. fillsoperatedasbioreactors.J.AirWaste5476 dx.doi.org/10.1021/es200721s|Environ.Sci.Technol.2011,45,5470–5476
因篇幅问题不能全部显示,请点此查看更多更全内容