99网
您的当前位置:首页涡流工艺规程

涡流工艺规程

来源:99网
1. 目的

保证本公司涡流检测工作的规范化和科学化,确保检测结果的正确性。 2. 适用范围

本规程适用于承压设备用导电性金属材料和焊接接头表面及近表面缺陷检测。 3. 编制依据

GB/T 5126 铝及铝合金冷拉薄壁管材涡流探伤方法 GB/T 5248 铜及铜合金无缝管涡流探伤方法 GB/T 7735 钢管涡流探伤检验方法 GB/T 12604.6 无损检测术语 涡流检测 GB/T 12969.2 钛及钛合金管材涡流检验方法 GB/T 14480 涡流探伤系统性能测试方法

JB 4730.1 承压设备无损检测 第1部分:通用要求 4.检测原理

涡流检测是以电磁感应原理为基础的一种检测方法。当试件经过通过交流点的线圈时,试件表面或近表面有缺陷部位的涡流就会发生变化,导致线圈的阻抗或感应电压产生变化,从而得到关于缺陷的信号,从信号的幅值及相位等,可以对缺陷进行判断。 5. 检测控制要求 5.1. 检测人员资格及要求

5.1.1 从事射线检测的人员,应按照《特种设备无损检测人员考核与监督管理规则》的要求取得相应无损检测资格。

5.1.2 无损检测人员资格级别分为Ⅲ(高)级、Ⅱ(中)级和Ⅰ(初)级。取得不同无损检测方法各资格级别的人员,只能从事与该方法和该资格级别相应的无损检测工作,并负相应的技术责任。

5.1.3 检测人员应依据被委托的要求,按有关规程、规定、标准进行准备工作。 5.2检测前的准备 5.2.1 检测系统

5.2.1.1 涡流检测系统一般包括涡流检测仪、检测线圈及辅助装置(如磁饱和装置、机械传动装置、记录装置、退磁装置等)。

5.2.1.2 涡流检测系统应能以适当频率的交变信号激励检测线圈,并能够感应和处理检测线圈对被检测对象电磁特性变化所产生的响应。

5.2.1.3 涡流检测系统性能应满足JB/T4730·6 及相关标准要求,有关仪器性能的测试项目与测试方法参照GB/T 14480 等的有关要求进行。

5.2.1.4 检测线圈的形式和有关参数应与所使用的检测仪器、检测对象和检测要求相适应。 5.2.1.5 磁化装置应能连续对检测线圈通过的被检件或其局部进行饱和磁化处理。若被检件不允许存在剩磁,磁化装置还应配备退磁装置,该装置应能有效去除被检件的剩磁。 5.2.1.6 机械传动装置应能保证被检件与检测线圈之间以规定的方式平稳地作相对运动,且不应造成被检件表面损伤,不应有影响检验信号的振动。 5.2.1.7 记录装置应能及时、准确记录检测仪器的输出信号。 5.2.2 对比试样

5.2.2.1 对比试样主要用于调节涡流检测仪检测灵敏度、确定验收水平和保证检测结果准确性。

5.2.2.2 对比试样应与被检对象具有相同或相近规格、牌号、热处理状态、表面状态和电磁性能。

5.2.2.3 对比试样上加工的人工缺陷应采用适当的方法进行测定,并满足相关标准或技术条件的要求。

5.2.2.4 对比试样上人工缺陷的尺寸不应解释为检测设备可以探测到的缺陷的最小尺寸。 5.2.3 被检件

5.2.3.1 被检件表面应清洁、无毛刺,不应有影响实施涡流检测的粉尘及其他污物,特别是铁磁性粉屑;如不满足要求,应加以清除,清除时不应损坏被检件表面。

5.2.3.2 被检件表面粗糙度、尺寸公差、弯曲度等参数应满足相关产品技术条件要求。 5.2.4 检测环境

5.2.4.1 实施检测的场地温度和相对湿度应控制在仪器设备和被检件允许的范围内。 5.2.4.2 检测场地附近不应有影响仪器设备正常工作的磁场、震动、腐蚀性气体及其他干扰。 6 检测的实施

6.1 铁磁性钢管涡流检测 6.1.1 适用范围

6.1.1.1 本条规定了承压设备用铁磁性无缝钢管、焊接钢管(埋弧焊钢管除外)等管材产品的涡流检测方法。

6.1.1.2 本条适用于外径不小于4mm钢管的涡流检测。 6.1.1.3 本条验收等级分为A级和B级(见表6.1)。

表6.1 对比试样通孔直径 mm

验收等级A 钢管外径D 通孔直径 1.20 1.70 2.20 2.70 3.20 3.70 钢管外径D 验收等级B 通孔直径 0.50 0.65 0.80 0.90 1.10 1.40 1.80 2.20 2.70 3.20 双方协议 D≤27 27<D≤48 48<D≤ <D≤114 114<D≤140 140<D≤180 D≤6 6<D≤19 19<D≤25 25<D≤32 32<D≤42 42<D≤60 60<D≤76 76<D≤114 D>180 双方协议 114<D≤152 152<D≤180 D>180

6.1.2检测方法

6.1.2.1 当采用穿过式线圈检测时(见图6.1),钢管最大外径一般不大于180mm。在靠近检测线圈的钢管表面上,其检测灵敏度最高,随着与检测线圈距离的增加,检测灵敏度逐渐降低。

注:图示是一种多线圈方案的简图,多线圈可以是分列式或初级线圈、双差动线圈等

图6.1 穿过式线圈涡流检测示意图

6.1.2.2 当使用旋转的钢管/扁平式线圈对钢管进行检测时,钢管和线圈应彼此相对移动,其目的是使整个钢管表面都被扫查到,典型的两种旋转方式见图6.2,使用这种技术时,钢管的外径没有。此外,也可采用钢管旋转并直线前进的方法(此时,扁平线圈固定)。这种技术主要用于检测外表面上的裂纹。

注:a)和b)中的扁平线圈可以采用多种形式,例如单线圈、多线圈等多种配置。

图6.2 旋转的钢管/扁平式线圈检测示意图(螺旋式扫描)

6.1.2.3 焊接钢管焊接接头的检测,除采用外穿过式探头进行检测外,也可采用放置式线圈,放置式线圈应有足够的宽度,通常做成扇形或平面形,以满足焊接接头在偏转的情况下得到扫查,见图6.3。

注:本图中的扇形线圈可以制成多种形式,取决于使用的设备和被检测钢管。

图6.3 扇形线圈焊接接头涡流检测示意图

6.1.3 对比试样

6.1.3.1 对比试样上人工缺陷的形状为通孔或槽。 6.1.3.2通孔

a 在试样钢管中部加工3个通孔,对于焊接钢管至少应有1个孔在焊缝上,沿圆周方向相隔120°±5°对称分布,轴向间距不小于200mm。此外,在对比试样钢管端部小于等于200mm处,加工2个相同尺寸的通孔,以检查端部效应,见图6.4。

图6.4 对比试样上通孔位置

b 对比试样上通孔尺寸见表6.1。

c 钻孔时应保持钻头稳定,防止局部过热和表面产生毛刺。当钻头直径小于1.10mm时,其钻孔直径不得比规定值大0.10mm。当钻头直径不小于1.10mm时,其钻孔直径不得比规定值大0.20mm。 4.3.3 槽

槽的形状为纵向矩形槽,平行于钢管的主轴线。槽的宽度不大于1.5mm,长度为25mm,其深度为管子公称壁厚的5%,最小深度为0.3mm,最大深度为1.3mm。深度允许偏差为槽深的±15%,或者是±0.05mm,取其大者。

4.3.4 根据检测目的,经供需双方协商,对比试样的人工缺陷可以加工成通孔或纵向矩形槽。 4.4 检测设备

4.4.1 磁饱和装置应能对所检测的区域施加强磁场,使其磁导率趋于常数。 4.4.2 检测仪器应包含1kHz~500kHz的工作频率范围。 4.5 检测条件与步骤

4.5.1 检测设备通电后,应进行不低于10min的系统预运转。

4.5.2 按规定的验收水平调整灵敏度时,信噪比应不小于6dB。作为产品验收或质量等级评定的人工缺陷响应信号的幅度应在仪器荧光屏满刻度的30%~50%。对比试样和检测线圈之间的相对移动速度应与被检钢管与检测线圈之间的实际相对移动速度相同。

4.5.3 对比试样中间3个对称通孔的显示幅度应基本一致,选取最低幅度作为检测设备的触发报警电平。

5 非铁磁性金属管材涡流检测 5.1 适用范围

5.1.1 本条规定了承压设备用非铁磁性金属管材产品的涡流检测方法。

5.1.2 本条适用于外穿过式线圈检测系统,对于铜及铜合金无缝管,可检测管材的壁厚小于等于3mm,外径小于等于50mm;对于铝及铝合金管,可检测管材的壁厚小于等于2mm,外径小于等于38mm;对于钛及钛合金管,可检测管材的壁厚小于等于4.5mm,外径小于等于30mm。其他规格的管材制品可参照此条执行。

5.1.3 对于奥氏体不锈钢及类似合金管材的检测范围、对比试样和检测方法,参照第5章内容执行。

5.2 铜及铜合金无缝管材检测方法

5.2.1 对比试样上人工缺陷为垂直于管壁的通孔。沿轴向加工5个相同孔径的通孔,其中,2个通孔分别距离管端小于等于100mm,中间3个通孔之间的间距为500mm±10mm,并沿圆周方向相隔120°±5°分布,见图5。

图5 对比试样上通孔位置

5.2.2 人工缺陷的孔径尺寸与被检管材外径的对应关系应符合表2的规定。孔径偏差不大于±0.05mm。

表2 无缝铜及铜合金对比试样管人工缺陷的孔径尺寸

mm

管材外径D 通孔直径d 0.4 0.6 0.8 1.0 1.2 D≤10 10<D≤20 20<D≤30 30<D≤40 40<D≤50

5.2.3 检测线圈内径应与被检管材外径相匹配,其填充系数大于等于0.6。检测频率范围为1 kHz~125kHz。

5.2.4 按规定的验收水平调整灵敏度时,信噪比大于等于10dB。人工缺陷响应信号的幅度应在仪器荧光屏满刻度的30%~50%。

5.2.5 中间3个对称通孔的显示幅度应基本一致,选取其最低幅度作为检测设备的触发-报警电平。

5.2.6 对比试样和检测线圈之间的相对移动速度,应与工作状态下被检管材和检测线圈之间的相对移动速度相同,且应满足仪器允许的检测速度上限要求。

5.2.7 对铜镍合金管材,若有必要,可以使用磁饱和装置,使被检区域达到磁饱和。 5.3 铝及铝合金管材检测方法

5.3.1 对比试样上人工缺陷为垂直于管壁的通孔,沿轴向加工5个相同孔径的通孔,其中,2个通孔分别距离管端100mm±5mm,中间3个通孔之间的间距为150mm±10mm并周向相隔120°±5°分布,见图6。

图6 对比试样管规格及相应通孔位置

5.3.2 人工缺陷的孔径尺寸与被检管材外径的对应关系应符合表3的规定,孔径偏差±0.05mm。

表3 铝及铝合金对比试样管人工缺陷的孔径尺寸 mm

对比试样管外径D 6<D≤10 10<D≤20 20<D≤30 30<D≤38

5.3.3 检测线圈的内径与被检管材外径相匹配,其填充系数大于等于0.6。检测频率范围为1kHz~125kHz。

5.3.4 按规定的验收水平调整灵敏度时,信噪比大于等于6dB。人工缺陷响应信号的幅度应在仪器荧光屏满刻度的30%~50%。

5.3.5 中间3个通孔的显示幅度应基本一致,选取最低幅度作为检测设备的触发-报警电平。 5.3.6 对比试样和检测线圈之间的相对移动速度,应与工作状态下被检管材和检测线圈之间的相对移动速度相同,且应满足仪器允许的检测速度上限要求。 5.4 钛及钛合金管检测方法

5.4.1 对比试样上人工缺陷为垂直于管壁的通孔。沿轴向加工5个相同孔径的通孔,其中,2个通孔分别距离管端100mm±5mm,中间3个通孔之间的间距为300mm~500mm,并沿圆周方向相隔120°±5°分布,参见图5。

5.4.2 对比试样上通孔直径为0.8 mm±0.05mm。

5.4.3 检测线圈的内径与被检管材外径相匹配,其填充系数大于等于0.6。检测频率为1kHz~125kHz。

5.4.4 按规定的验收水平调整灵敏度时,信噪比大于等于6dB。人工缺陷响应信号的幅度应在仪器荧光屏满刻度的30%~50%。

5.4.5 中间3个通孔的显示幅度应基本一致,选取最低幅度作为检测设备的触发-报警电平。 5.4.6 对比试样和检测线圈之间的相对移动速度,应与工作状态下被检管材和检测线圈之间的相对移动速度相同,且应满足仪器允许的检测速度上限要求。

通孔直径d 0.5 0.8 1.2 1.3 6 在用铁磁性钢管的远场涡流检测 6.1 适用范围

6.1.1 本条规定了对在用铁磁性钢管采用远场涡流检测的方法。

6.1.2 本条适用于外径为φ12.5mm~φ25mm、壁厚为0.70mm~3mm的铁磁性钢管的远场涡流检测。在此规格之外的钢管,可参照此条执行。 6.2 检测设备 6.2.1 检测仪器

6.2.1.1 采用电压平面显示方式,实时给出缺陷的相位、幅值等特征信息,可将干扰信号与缺陷信号调整在易于观察及设置报警区域的相位上。 6.2.1.2 可采用自动平衡技术。

6.2.1.3 频率范围为10Hz~5kHz;仪器应具有良好的低频检测特性。

6.2.1.4 应至少具备2个可选频率和4个非分时的检测通道;具备存储、分析等功能。 6.2.2 探头

6.2.2.1 如图7a)所示,远场涡流激励线圈与检测线圈间距为被检管子内径的2倍~3倍,检测线圈的探头必须具有合适的直径,应能顺利通过所要检测的管子,并具有尽可能大的填充系数。

6.2.2.2 如图7b)所示,采用两个激励线圈、一个检测线圈,或一个激励线圈、两个检测线圈,这种结构探头用于降低由支撑板和其他导体产生的干扰信号。

6.2.2.3 绝对检测线圈和差动检测线圈——绝对检测线圈主要用于大范围渐变缺陷的检测,差动检测线圈对管道长度方向上的突变性缺陷具有最大响应信号。

6.2.2.4 多点式检测线圈。如图7c)所示多点式检测线圈用于检测管子周向壁厚的偏差。多点式线圈相对于管子既可以径向放置,也可以轴向放置。用多点式检测线圈时,应采用有相应通道数的检测仪器。

注:箭头表示从激励线圈到检测线圈电磁场能量流的方向。

图7 远场涡流检测探头结构示意图

6.3 远场涡流检测对比试样

6.3.1 对比试样原则上应满足3.2的规定,如果达不到规定要求,则对比试样管应选取与被测管的公称直径相同,壁厚和材料特性、规格相近的铁磁性管。

6.3.2 对比试样管人工缺陷的深度标示为缺陷最深点的深度,并用管道公称壁厚的百分比表示。缺陷深度的尺寸精度在±2%以内,其他方向上的尺寸精度在±0.25mm以内。 6.3.3 远场涡流对比试样管的人工缺陷尺寸。

6.3.3.1 圆底孔——用直径10mm的球形钻头,加工深度50%(图8缺陷A)。 6.3.3.2 通孔——通孔的直径为壁厚的1.25倍(图8缺陷B)。 6.3.3.3 周向窄凹槽——槽深为20%壁厚(图8缺陷C),槽宽为3mm;

6.3.3.4 周向宽凹槽——槽深为20%壁厚(图8缺陷D),槽宽大于或等于2倍管公称直径。 6.3.3.5 单边缺陷:Ⅰ型对比试样管的单边缺陷——深度60%,轴向长度为15mm的周向单边缺陷[图8 a)缺陷E],其周向幅度为180°~270°。Ⅱ型对比试样管的单边缺陷——深度50%,轴向长度大于或等于2倍管外径的铣槽[图8 b)缺陷E]。

a) 远场涡流检测对比试样管Ⅰ(示意图)

b)远场涡流检测对比试样管Ⅱ(除缺陷外,其他同Ⅰ)

图8 远场涡流检测对比试样Ⅰ和Ⅱ

6.3.4 远场涡流检测对比试样管用于检测前调整仪器检测灵敏度。

6.3.5 远场涡流检测对比试样管一般不能用于缺陷特征分析,除非其人工缺陷与所要检测的缺陷相似。如检测时确有需要,可以按附录A(规范性附录)制作缺陷特征对比试样。 6.4 操作步骤 6.4.1 仪器调整

6.4.1.1 工作频率——使用远场涡流检测对比试样,调整工作频率,调整后应使电磁场能较好地穿透管壁,使仪器对最小缺陷的检测有足够的灵敏度。

6.4.1.2 调整仪器其他工作参数,特别是仪器的滤波参数使其适应探头的移动速度。

6.4.1.3 可使用辅助频率测试,为进一步分析提供更多的数据。

6.4.2 通过远场涡流检测对比试样管人工缺陷测试,确认系统调整达到了所要求的灵敏度。 6.4.3 校验。检测过程中每隔2h,须用对比试样管对仪器和探头进行一次综合校验。 6.4.4 如果系统校验时对比试样管的人工缺陷特征参数发生明显的改变,前次系统校验之后检测过的管子应重新进行检测。 6.4.5 信号分析

6.4.5.1 使用从远场涡流检测对比试样管获得的数据作为仪器缺陷检测能力的衡量标准,判断被检管是否有缺陷存在。 6.4.5.2 辅助检测

可选择适当的辅助检测方法对有问题的区域进行再次检测,如采用专用视频内窥镜进行确认。 6.5 检测

6.5.1 检验前,应对在用铁磁性钢管内表面进行清洗,并满足检测要求。

6.5.2 整个检测过程中,尽可能地使探头移动速度恒定平稳。推荐使用探头推拔器作辅助检测装置,但其不得对管子内壁造成损伤。探头在管内的检测速度,视所用仪器和选择的参数而定,一般不超过10m/min.。 7 在用非铁磁性管涡流检测 7.1 适用范围

7.1.1 本条规定了采用内穿过式线圈检测在用非铁磁性管的涡流检测方法。

7.1.2 本条适用于外径10mm~50mm、壁厚在0.75mm~3.0mm的非铁磁性管的涡流检测。 7.1.3 本条所涉及的涡流检测,通常是在设备检修时,或业主认为有必要时进行。 7.2 检测设备

7.2.1 涡流探伤仪应至少有2个可选频率,频率范围为1kHz~1MHz。

7.2.2 涡流探伤仪除具备检出管子裂纹、腐蚀坑和重皮等一般缺陷能力外,还应具备测量分辨管子壁厚均匀减薄的能力,当使用同时具备差动、绝对通道检出能力的仪器时,上述工作可一次检测完成;当使用的仪器无此功能时,应分别作差动和绝对通道检测。

7.2.3 仪器应包括激励、信号处理、相位调节、滤波、混频处理等单元,并有相应的报警设置、阻抗平面显示以及可靠的记录装置。

7.2.4 内穿过式探头与涡流探伤仪组合,应能在管壁内产生感应电流、检测出管材损伤情况,并能有效地消除管板、支撑板、噪声等干扰信号影响。

7.2.5 探头的外径应根据被检管子内径加以确定,以保证尽可能大的填充系数。

7.2.6 当采用探头推拔器时,其机械传动装置应保证探头匀速、平稳地通过管子,不得造成管子内表面损伤,不得有影响检验信号的振动。 7.3 对比试样

7.3.1 对比试样应满足4.3的要求。

7.3.2 对比试样上人工缺陷的尺寸不应解释为检测设备可以探测到的缺陷的最小尺寸。 7.3.3 对比试样上人工缺陷的形状为通孔、平底孔和周向切槽。

7.3.4 采用I型对比试样调整检测系统,对比试样上人工缺陷的位置和尺寸如下(见图9):

a) A是 1个贯穿管壁的通孔。对外径小于等于20mm的管子,孔径为1.3mm;对外径大于20mm的管子,孔径为1.7mm。

b) B是4个平底孔。孔径为4.8mm,环绕管子的圆周并在同一横截面上成90°分布,从外壁面钻入,深度为壁厚的20%。

c) C是1个360°的周向切槽。槽宽为3.2mm,深度为壁厚的20%,从管子的外壁面切入(供绝对式探头校正用,可选用)。

d) D是1个360°的周向切槽。槽宽为1.6mm,深度为壁厚的10%,从管子的内壁面切入(供绝对式探头校正用,可选用)。

A B C 注:如果能证明可以获得相同的效果,可以采用其他的人工缺陷对比试样管。

图9 I型对比试样上人工缺陷的形状及位置示意图

7.3.5 采用Ⅱ型试样测试缺陷深度与相位关系的曲线,对比试样上人工缺陷的位置和尺寸如下(见图10):

a) A是 1个穿透壁厚的孔,管子外径≤20.0mm,孔径为1.3mm,管子外径>20.0mm,孔径为1.7mm。

D b) B是 1个外壁面平底孔,孔径为2.0mm,深度为壁厚的80%。 c) C是1个外壁面平底孔,孔径为2.8mm,深度为壁厚的60%。 d) D是1个外壁面平底孔,孔径为4.8mm,深度为壁厚的40%。

e) E是 4个外壁面平底孔,孔径为4.8mm,环绕管子的圆周并在同一横截面上成90°

±5°分布,深度为壁厚的20%,从外壁面钻入。

注:如果能证明可以获得相同的效果,可以采用其他的人工缺陷对比试样管。

图10 II型对比试样上人工缺陷的形状及位置示意图

7.3.6 所有人工缺陷的轴向间隔及与管端的距离,以在检验条件下能清楚地分辨为准(一般推荐距端头200mm,相互间隔为100mm~300mm)。

7.3.7 人工缺陷平底孔中心或刻槽的深度,其误差不超过规定深度的±20%,或是±0.08mm,取两者中的较小值。其他所有人工缺陷的加工尺寸误差都应小于±0.25mm。 7.3.8 经合同双方协议,可以采用附录B(规范性附录)所示Ⅲ型对比试样。 7.4 仪器调整

7.4.1 差动式探头主检测频率的调整

7.4.1.1 选定一个主检测频率(一般为10kHz~400kHz),使对比试样上4个深度为20%壁厚的平底孔的涡流信号比穿透管壁的通孔涡流信号相位角沿顺时针方向相差为50°~120°,见图11。

图11 采用差动通道经过正确调整的典型涡流信号阻抗平面图

7.4.1.2 拉出探头时,20%壁厚的平底孔的涡流信号轨迹见图11,1朝下向左,2、3朝上向右,4向下回到原点。

7.4.1.3 调节仪器的相位,使通孔信号的相位角在40°±5°。拉出探头时,信号轨迹如图11所示。

7.4.1.4 调节仪器的增益,使通孔信号幅值相当于水平满刻度的40%左右。在此灵敏度下,应能清晰地分辨出每一个人工缺陷信号的相位和幅值。 7.4.2 绝对探头主检测频率的调整

7.4.2.1 选定一个主检测频率(一般为10kHz~100kHz),使从原点到通孔信号顶点的连线和水平之间的相位角约为40°。同时使原点到来自四个深度为壁厚的20%平底孔的信号顶点的连线与上述通孔信号相应连线间相位角为50°~120°(见图12)。可在阻抗平面图上旋转180°观测。

图12 采用绝对式探头经过正确调整的典型涡流信号阻抗平面图

7.4.2.2 将绝对式探头置于对比试样管的无人工缺陷部位,调节仪器使光点在平衡位置。 7.4.2.3 调节仪器的增益,使通孔信号的幅值相当于水平满刻度的40%左右。

7.4.2.4 调节仪器的相位,使内壁切槽的涡流信号的相位角位于与显示屏水平线成±5°范围内。

7.4.3 选定辅助检测频率(一般为主检测频率的1/2或1/4)以抑制管板和支撑板信号。管板和支撑板样管由与实际管板和支撑板材质热处理状态相同的材料制成。增加管板后,在混合通道中,每一个人工缺陷信号的相位和幅值应能清晰地显示。 7.4.4 记录对比试样上各人工缺陷的涡流信号。

7.4.5 为确定端部效应信号抑制的管子长度,选择一根低背景噪声的管子并在距管子端部150mm~200mm处开一标定通孔,让检测线圈通过管子,如果探测不到人工缺陷,则应离管端部更远处再制作另一个人工缺陷。如果能探测到人工缺陷,则将管子端部截去10mm,如此反复,直到不再探测到人工缺陷为止。所能探测到的人工缺陷至管端的最短距离即是端部效应信号抑制的管子长度。 7.5 检测

7.5.1 探头送进、拉出可采用手动方式,也可采用机械传动方式,两者都应能识别探头在管子中的位置,并保持速度均匀。

7.5.2 检验时探头最大拉出速度视所用仪器和选择的参数而定,一般不超过20m/min。 7.5.3 对所有缺陷信号和怀疑信号的数据都应作好记录。 8 检测结果的评定与处理 8.1 综合评定

检验结果可根据缺陷响应信号的幅值和相位进行综合评定。缺陷深度应依据缺陷响应信号的相位角进行评定。 8.2 制造管材的评定与处理

8.2.1 质量验收等级的规定应按供需双方合同,或按有关产品标准要求。

8.2.2 经检验未发现尺寸(包括深度)超过验收标准缺陷的管材为涡流检测合格品。 8.2.3 经检验发现有尺寸(包括深度)超过验收标准缺陷的管材,可复探或应用其他检测方法加以验证。若仍发现有超过验收标准的缺陷,则该管材为涡流检测不合格品。

8.2.4 不合格的管材经设计部门或委托检验方同意,可在缺陷部位进行清除或修补后重新进行检测。如满足8.2.2要求可作为检测合格品,否则为检测不合格品。 8.3 在用设备的评定与处理

在用设备的合格等级应与业主协商,按有关规程确定。 9 检测报告

一般应包括以下内容: a) 委托单位;

b) 被检工件:名称、编号、规格、材质、坡口型式、焊接方法和热处理状况; c) 检测设备:涡流检测仪及探头型号(差动、绝对),名称、型号和源尺寸; d) 检测规范:检测使用的参数(频率、速度),对比试样的牌号、规格和编号; e) 工件检测部位应在草图上予以标明,如有因检测方法或几何形状而检测不到的部位,也应加以说明;

f) 检测结果即质量分级、检测标准名称和验收等级; g) 检测人员和责任人员签字及其技术资格; h) 检测日期。

因篇幅问题不能全部显示,请点此查看更多更全内容