99网
您的当前位置:首页支持非对称链路的路由协议比较

支持非对称链路的路由协议比较

来源:99网
RoutingPerformanceinthePresenceofUnidirectional

LinksinMultihopWirelessNetworks

DepartmentofECECSUniversityofCincinnati

Cincinnati,OH45221-0030USA

MaheshK.Marina

DepartmentofECECSUniversityofCincinnati

Cincinnati,OH45221-0030USA

SamirR.Das

mmarina@ececs.uc.edu

ABSTRACT

Weexaminetwoaspectsconcerningtheinfluenceofunidirectionallinksonroutingperformanceinmultihopwirelessnetworks.Inthefirstpartofthepaper,weevaluatethebenefitfromutilizingunidirectionallinksforrouting,asopposedtousingonlybidirec-tionallinks.Ourevaluationsarebasedonthreetransmitpoweras-signmentmodelsthatreflectsomerealisticnetworkscenarioswithunidirectionallinks.Ourresultsindicatethatthemarginalbenefitofusingahigh-overheadroutingprotocoltoutilizeunidirectionallinksisquestionable.

Mostcommonroutingprotocols,however,simplyassumethatallnetworklinksarebidirectional,andthusmayneedadditionalprotocolactionstoremoveunidirectionallinksfromroutecom-putations.Inthesecondpartofthepaper,weinvestigatethisis-sueusingawellknownon-demandroutingprotocol,AdhocOn-demandDistanceVector(AODV),asacasestudy.WestudytheperformanceofthreetechniquesforAODVforefficientoperationinpresenceofunidirectionallinks,viz.,BlackListing,Hello,andReversePathSearch.WhileBlackListingandHellotechniquesex-plicitlyeliminateunidirectionallinks,theReversePathSearchtech-niqueexploitsthegreaternetworkconnectivityofferedbytheexis-tenceofmultiplepathsbetweennodes.Performanceresultsusingns-2simulations,undervaryingnumberofunidirectionallinksandnodespeeds,showthatallthreetechniquesimproveperformancebyavoidingunidirectionallinks,theReversePathSearchtechniquebeingthemosteffective.

sdas@ececs.uc.edu

1.INTRODUCTION

Aunidirectionallinkarisesbetweenapairofnodesinanetworkwhenonlyoneofthetwonodescandirectlycommunicatewiththeothernode.Inmultihopwirelessnetworks(alsoknownasadhocnetworks),unidirectionallinksoriginatebecauseofseveralrea-sons.Theseincludedifferenceinradiotransceivercapabilitiesofnodes,theuseoftransmissionrangecontrol,differenceinwirelesschannelinterferenceexperiencedbydifferentnodes.Dependingonsuchconditions,unidirectionallinkscanbequitecommon.

Thispaperaddressesroutinginthepresenceofunidirectionallinks.Mostofthepreviousworkonthisproblemconcentratedondevelopingroutingprotocols[1,10,39,31,33,2],ortechniquessuchastunneling[23]toallowtheuseofunidirectionallinks.Buttheresultingperformanceadvantagesandtradeoffsarenotwellun-derstood.Ourapproachinthisworkistoempiricallystudytheinfluenceofunidirectionallinksonroutingperformance.

Utilizingunidirectionallinksalongwithbidirectionallinksforroutinghastwoconceivableadvantagesoverusingonlybidirec-tionallinks.First,theycanimprovethenetworkconnectivity.Forexample,removalofunidirectionallinksinFigure1partitionsthenetwork.Second,theycanprovidebetter,i.e.,shorter,paths.InFigure1,nodecancommunicatetonodedirectlyinonehopbyusingtheunidirectionallinkwhereasthealternate

requirestwohops.bidirectionalpath

Butroutingusingunidirectionallinksiscomplexandentailshighoverheads.Maindifficultycomesfromtheasymmetricknowledgeaboutaunidirectionallinkatitsendnodes.Anodedownstreamofaunidirectionallink(forexample,nodeinFigure1)immediately

)onknowsabouttheincomingunidirectionallink(link

hearingatransmissionfromtheupstreamnode(node);buttheupstreamnodemaynotknowaboutitsoutgoingunidirectionallinkuntilthedownstreamnodeexplicitlyinformsitoveramultihop

path).Learningaboutthereversepath(say,

unidirectionallinkthusincurshigheroverheadthanwhenthelinkisbidirectional.

Thereisevidenceintheliteraturethatroutingprotocolsfindingunidirectionalpaths(pathswithoneormoreunidirectionallinks)aresubjecttohigheroverheadsthanthosefindingonlybidirec-tionalpaths.Fordistance-vectorprotocols,Gerlaetal.[10]andPrakash[33]independentlymakethisobservation.Intherealmofon-demandprotocolsforadhocnetworksalso,similarobservationcanbemade.DSR[15]requirestworoutediscoveriestodiscoverunidirectionalpaths—onefromthesourceandtheotherfromthedestination,asopposedtoasingleroutediscoverytofindbidi-rectionalpaths.Althoughpurelink-stateprotocolssuchasOSPF[21]maybeabletosupportunidirectionallinkswithleastaddi-tionaloverhead,theyalreadyhaveveryhighoverheadscompared

CategoriesandSubjectDescriptors

C.2.2[Computer-CommunicationNetworks]:NetworkProto-cols.

GeneralTerms

Performance,Algorithms.

Keywords

Multihopwirelessnetworks,Adhocnetworks,Unidirectionallinks,Asymmetriclinks,Routing,On-demandrouting,Multipathrout-ing.

Permissiontomakedigitalorhardcopiesofallorpartofthisworkforpersonalorclassroomuseisgrantedwithoutfeeprovidedthatcopiesarenotmadeordistributedforprofitorcommercialadvantageandthatcopiesbearthisnoticeandthefullcitationonthefirstpage.Tocopyotherwise,torepublish,topostonserversortoredistributetolists,requirespriorspecificpermissionand/orafee.

MOBIHOC’02,June9-11,2002,EPFLLausanne,Switzerland.Copyright2002ACM1-58113-501-7/02/0006...$5.00.

12

B

C

D

A

F

E

eliminateunidirectionallinksinAODV.Usingns-2simulations,weevaluatetheperformanceofthesethreetechniquesrelativetobasicAODV.

Therestofthepaperisorganizedasfollows.Section2eval-uatestheidealizedperformanceadvantageofroutingusingunidi-rectionallinks.Section3investigatestheissueofavoidingunidi-rectionallinksfromroutecomputationsinthecontextofAODV.HerewepresentandevaluatethreetechniquestoimprovebasicAODVperformanceinnetworkswithunidirectionallinks.Section4reviewsrelatedwork.Finally,wepresentourconclusionsinSec-tion5.

Figure1:Anetworkwithunidirectionallinks.

2.BENEFITOFUNIDIRECTIONALLINKS

FORROUTING2.1UnidirectionalLinkScenarios

Generallyspeaking,therearetwoprincipalreasonsbehindthepresenceofunidirectionallinksinmultihopwirelessnetworks.First,differenceinradiotransmissionpowerlevel(orreceiversensitiv-ity)ofthenodesgiverisetounidirectionallinks.Whentwonodes(sayAandB)havewidelydifferentradiotransmissionranges1sothatnodeAcantransmittonodeBbutnottheotherway,auni-directionallinkformsfromnodeAtonodeB.Nodesmaynatu-rallyhavedifferenttransmissionrangesinaheterogenousnetworkwherethereisaninherentdifferenceinradiocapabilities.Alter-natively,theymayhavedifferenttransmissionrangeswhenpowercontrolalgorithmsareusedforenergysavingsortopologycontrol.Second,differenceininterference(ornoise)atdifferentnodescauseasymmetriclinks.Asymmetriclinksoccurbetweenapairofnodesifthelinkqualityisdifferentineachdirection.Anextremecaseoflinkasymmetryleadstounidirectionallinks.Nodesmayexperiencedifferentinterferencelevelsbecauseofwirelesschan-nelimperfectionssuchasmultipathfadingandshadowing.Hiddenterminalscanbeanothercauseofwidevariationininterferencelevels(asalsomentionedin[33]).

Tostudythebenefitofunidirectionallinksforrouting,weonlyconsiderunidirectionallinksarisingfromdifferenceintransmis-sionranges.Notethatforunidirectionallinkstobeeffectiveforrouting,theyshouldexistlongenoughfortheroutingprotocoltocomputeroutesthroughthemandtolaterusesuchroutestofor-wardsomedata.Unidirectionallinkscausedbyvariationinin-terferencelevelspresumablyhappenonmuchsmallertime-scalesthanwouldbeneededforrouting.Soherewelimitourselvestounidirectionallinksfromvariabletransmissionranges.However,laterinthepaper,wedotakeintoaccounttheissueofinterferencetosomeextent,specificallyfromhiddenterminals,whenstudyingthenegativeinfluenceofunidirectionallinksonrouting.

Amongthepowercontrolalgorithms,onlyaparticularclassisrelevanthere.Somepowercontrolalgorithmsprescribeacom-monpowerlevelforallnodesinthenetwork(e.g.,[22]).Thesealgorithmsdonotcreateanyunidirectionallinks.Otheralgorithmsthatdoallowvariablepowerlevelseitherassignpowerlevelsonaper-transmissionbasis(e.g.,[41,20]),orassignpowerlevelsin-dependentofanysingletransmission,butmaybeusedforseveralsuccessivetransmissions(e.g.,[13,37,34,40]).Sincetheformersetofalgorithmsmayresultinshort-termunidirectionallinks,welimitourattentiontothelatterclassonly.

Wewillsometimesusetransmissionrangeinsteadoftransmissionpowertosimplifydescription.Notethatitisusuallystraightfor-wardtocomputethe“nominal”transmissionrangeofanodegiventhetransmissionpower,large-scalepathlossmodel,andtheradioparameters.

toothercompetingprotocolsforadhocnetworks[6].Exactlyforthisreason,efficientvariantsoflink-stateprotocols(e.g.,TBRPF[24],OLSR[5])havebeendeveloped.Buttheseprotocolsworkonlywithbidirectionallinks.

Besides,theuseofunidirectionallinksposesproblemstoexist-inglink-layerprotocols.Manycommonlink-layerprotocolsformediumaccessandaddressresolutionnotonlyassumebidirec-tionallinks,butalsoverymuchdependontwo-wayhandshakesandacknowledgmentsfortheiroperation.Forexample,thewell-knownIEEE802.11DCFMACprotocol[14]dependsontheex-changeofRTS-CTScontrolpacketsbetweenthesenderandthereceivertopreventhiddenterminalcollisions,andalsoexpectsac-knowledgmentfromthereceivertojudgecorrectpacketreceptionofunicasttransmissions.

Thusitisimportanttoevaluatethepotentialbenefitofunidirec-tionallinkstoknowwhetheremployingaseeminglyhighoverheadunidirectionallinkroutingprotocolisjustified.Weevaluatethisbenefitinthefirstpartofthepaper.Wecomparetworoutingap-proaches:(i)usingbothunidirectionalandbidirectionallinks;(ii)usingonlybidirectionallinks.Welookattheidealizedroutingper-formanceobtainedfromthesetwoapproaches—independentofspecificroutingprotocolsorassociatedoverheads—tofindoutanyperformanceadvantagesofutilizingunidirectionallinks.Toaccomplishthisgoal,wesimulatealargenumberofrandommul-tihopnetworktopologieswithunidirectionallinks.Westudytheconnectivityandpathcostmetricsofthesetopologieswhenuni-directionallinksareused,andwhentheyareignored.Inordertocreateunidirectionallinks,weusethreemodelsthatassignvariabletransmissionrangestonodes.Thesemodelsreflectsomerealisticwirelessnetworkscenarioshavingunidirectionallinks.Ourresultsshowthattheconnectivityadvantageusingunidirectionallinksisalmostnon-existent,butshortestpathcostsshowsomeimprove-mentwithunidirectionallinks.However,theseimprovementstoogoawaywhenhop-by-hopacknowledgmentcostsareaccounted.Utilizingunidirectionallinksforroutingpurposesmaynotbeef-ficient,andmostroutingprotocolsindeedworkwithonlybidirec-tionallinks.Buttheseprotocolsmuststillneedadditionalmecha-nismsto“eliminate”unidirectionallinksfromroutecomputationswhentheyarepresent.Weinvestigatetheimportanceofsuchmech-anismsusingawell-knownon-demandroutingprotocolcalledAdhocOn-demandDistanceVector(AODV)[29,28].ThebasicAODVprotocolworksonlywithbidirectionallinks.WeproposeanewtechniquecalledReversePathSearchtohandleunidirectionallinksinAODV.Thistechniquetakesadvantageofmultiplepathsbe-tweennodestoovercomeunidirectionallinks.Wealsoconsidertwoothertechniques—BlackListingandHello—thatexplicitly

13

2.2ModelsforVariableTransmitPowerAs-signment

Basedontheabovediscussion,weusethefollowingmodelsinourevaluationstocreatenetworkswithunidirectionallinks.TwoPowerInthismodel,thetransmissionrangeofanodecan

takeoneoftwopossiblevalueswithequalprobability.Anodecanhaveeitherashortoralongrangecorrespondingtolowandhightransmissionpowerlevels,respectively.Thefractionoflowpowernodesisthevariableparameter.Asimilarmodelwasusedin[38,26].Thismodelrepresentsaheterogenousnetworkwithtwowidelydifferentradiocapa-bilities.Forexample,transmissionpowerlevelsofvehicularandman-packradiosinabattlefieldscenariocandifferbyasmuchas10dB.RandomPowerWiththismodel,eachnodeisassignedarandom

transmissionrangethatisuniformlydistributedbetweenmin-imumandmaximumrangevalues.Thismodelisrepresen-tativeoftwopracticalscenarioswhereunidirectionallinksmightoccur:(i)ageneralizationofTwoPowerlevelmodeldescribedabove,i.e.,anetworkofnodeswithmultipledif-ferentpowerlevels;(ii)asnapshotofanetworkinwhicheachnodeadjustsitstransmitpowerbasedontheavailableenergysupplytoconserveitsbatterypower.RodopluandMeng(R&M)Thismodelisbasedonthedistributed

topologycontrolalgorithmproposedbyRodopluandMeng[37].Topologycontrolalgorithms(e.g.,[13,37,34,40])adjustnodetransmitpowersinordertoobtainatopologythatoptimizesacertainobjectivesuchasnetworkcapacity,networkreliabilityornetworklifetime.Almostalltopol-ogycontrolalgorithmsintheliteraturetrytoguaranteesomeformofnetworkconnectivitywhileoptimizingoneoralloftheabovecriteria.WehavechosentheR&Malgorithmbe-causeitistheonlyalgorithminourknowledgethatconsidersunidirectionallinksandensuresstrongconnectivitypossiblyusingsomeunidirectionallinks.Thisfeatureofthealgo-rithmprovidesafavorablecasefortheuseofunidirectionallinksforroutingtopotentiallyprovidebetternetworkcon-nectivity.Allotheralgorithmsguaranteeconnectivityusingbidirectionallinksaloneandthusarenotgoodcandidatesforourevaluation.

HerewebrieflyreviewtheR&Malgorithmforthebene-fitofthereaders.Thealgorithmaimsatachievingenergyefficiencythroughtransmitpoweradjustment.Becauseofthenatureofwirelesscommunication,itissometimesen-ergyefficientforanodetousealowertransmitpowerandcommunicatewithafarthernodeusingintermediaterelayingnodesthantousehigherpowerandcommunicatedirectly.Thealgorithmusesthisobservationtoadvantage.Centraltothealgorithmisthenotionofanenclosure.Enclosureofanoderepresentsitsimmediatelocality.Aslongaseachnodemaintainslinkswithnodesinitsenclosure,strongconnec-tivityisguaranteed.Soeachnodereducesitstransmitpowerfromthemaximumvaluetoalevelwhereitcanreachonlynodesinitsenclosure.Thealgorithmassumesthateachnodeknowsitsposition.Everynodecomputesitsenclosuresetbyexchangingpositioninformationwithallreachablenodes(usingmaximumpower).

complishthisgoal,weevaluatetheidealizedroutingperformanceoftwoapproaches:(i)utilizingunidirectionalaswellasbidirec-tionallinks;(ii)utilizingonlybidirectionallinks.Ourevaluationprocessinvolvesstaticsimulationoflargenumber(overathousandforeachdatapoint)ofrandommultihopnetworktopologiescon-tainingunidirectionallinks,andcomparingtheaverageconnectiv-ityandpathcostmetricswithandwithoutunidirectionallinks.Thethreemodelsfortransmitpowerassignmentdescribedinthepre-vioussubsectionareusedtogeneratenetworkswithunidirectionallinks.

Tomeasureconnectivity,wecomputetheaveragenumberofstronglyconnectedcomponentsandlargeststronglyconnectedcom-ponentoverallrandomgraphsamples.Forcomparingthepathquality,weconsidertheaverageshortestpathcost,per-hopac-knowledgmentcostandthetotalcommunicationcost.Notethatallpathcostsareinnumberofhopsandareaveragedoverallnodepairshavingabidirectionalpathbetweenthem,foreachrandomgraphsample—averagedoverallsuchsamples.Theper-hopac-knowledgmentcostiscomputedastheaveragecostoftraversingashortestpathbetweenapairofnodeshop-by-hopinthereversedirection.Thetotalcommunicationcostissimplythesumoftheshortestpathandacknowledgmentcosts.

Weexperimentwithawidevarietyofnodedensitiesandra-dioranges.Allourexperimentsarefor100nodenetworks.Eachrandomnetworktopologyconsistsofnodesrandomlyplacedinasquarefield.Tovarynodedensity(measuredasnodes/sq.km),thedimensionsofthefieldarevaried.Inallthreerangeassignmentmodels,afixedmaximumtransmissionrangeof250misused.IntheTwoPowermodel,thefractionoflowpowernodesisvariedtogetdifferentrangeassignments.Thelongrangeissameasthemax-imumrange,whiletheshortrangeisalwayssetto125m.Notethatweexperimentedwithdifferentshortrangevalues,buttheresultsarenotverysensitivetothesevalues.IntheRandomPowermodel,theminimumrangeischangedforvariationinranges.IntheR&Mmodel,theradiorangeofanodeiscontrolledbythealgorithm,andcannotbeartificiallyvaried.

2.4SimulationResults

2.4.1VariationinNodeDensity

Herewestudytheeffectofnodedensityonconnectivityandpathcostmetricsinallthreerangeassignmentmodels.ThefractionoflowpowernodesintheTwoPowermodelissetto0.5asthisvalueresultsinthemostnumberofunidirectionallinks.IntheRandom-Powermodel,theminimumrangevalueiskeptconstantat125mwhichischosensomewhatarbitrarily.Wedidexperimentswithothervaluesofminimumrange,buttheresultsdidnotvarymuch.Nodedensityisvariedsothatallnetworkconfigurationsarecov-eredstartingfromverysparseanddisconnectednetworkstohighlydenseandconnectednetworks.Notethatnumberofunidirectionalandbidirectionallinks(datanotshown)increasewithincreaseindensityinallthreemodels.However,therelativenumberoftheselinksandtheirrateofincreasewithdensityisverymuchdependentonthespecificmodelused.Also,wenoticedthatthemeanradiorangeintheR&Mmodelshrankasnodesbecomedenser.Thisisexpected,however,giventhenatureoftheunderlyingalgorithm.Thefirstsetofplots(Figure2)studythenetworkconnectivitypropertieswithandwithoutusingunidirectionallinks.Thenumberofstronglyconnectedcomponentsandthesizeofthelargestcom-ponentsareverysimilarregardlessofwhetherornotunidirectionallinksareused.Notethatunidirectionallinksdonotimprovecon-nectivityintheR&Mmodeleventhoughtheyareexplicitlytakenintoaccountbythealgorithm.Furthermore,wefoundthatconnec-

2.3EvaluationMethodology

Ourgoalhereistoassessthebenefitattainablefromusinguni-directionallinksforroutinginmultihopwirelessnetworks.Toac-

14

50Strongly connected components4540353025201510500

Strongly connected components40353025201510500

50100150200250300350400450500

Density (nodes/sq. km)

Strongly connected componentsWith unidirectional linksWithout unidirectional links

5045

With unidirectional linksWithout unidirectional links

18161412108200

With unidirectional linksWithout unidirectional links

50100150200250300350400450500

Density (nodes/sq. km)50100150200250300350400450500

Density (nodes/sq. km)

(a)TwoPower

Largest strongly connected componentLargest strongly connected component1009080706050403020100

With unidirectional linksWithout unidirectional links

50100150200250300350400450500

Density (nodes/sq. km)

1009080706050403020100

(b)RandomPower

Largest strongly connected component100908070605040300

(c)R&M

With unidirectional linksWithout unidirectional links

50100150200250300350400450500

Density (nodes/sq. km)

With unidirectional linksWithout unidirectional links

50100150200250300350400450500

Density (nodes/sq. km)

(d)TwoPower(e)RandomPower(f)R&M

Figure2:Connectivitymetricsinallthreemodelswithvaryingdensity.

tivitymetricsinthismodelareexactlyidenticaltothecasewhereallnodesusethemaximumrange.Boththeseobservationssuggestthatitmaybesomewhatunlikelyinrandomtopologiesfortwosub-componentstobeconnectedbytwounidirectionallinks(betweendifferentnodepairs).

Thesecondsetofplots(Figure3(a,b,c))showstheaveragecostoftheshortestpath.Theinitialhumpintheplotsisbecauseofthesharptransitionfromdisconnectedtoconnectednetworkswithinasmallrangeofdensities.ObservethatignoringunidirectionallinksonlymarginallyincreasestheshortestpathcostinTwoPowerandRandomPowermodels(Figure3(a,b))exceptwhenthedensityisbetween50–100nodes/sq.km,wheretheincreaseismoresignifi-cant.IntheR&Mmodel(Figure3(c)),theincreaseismarginalforlowerdensity,butincreaseswithincreasingdensity.

However,notethattheshortestpathcostisonlyapartoftheoverallpicture.Manyadhocnetworkprotocolsusesomesortofper-hopacknowledgmenteitherinthenetworkorthelinklayertoguaranteereliabletransmissionandalsotodetectlinkbreaks.Useofunidirectionallinkswillcausesuchacknowledgmentstotraversemultiplehops–possiblyinthenetworklayer(see[23]foranideabasedontunneling).Thiswillincreasetheoverallcommunica-tioncost.Asexpected,thehop-by-hopacknowledgementcostsaremoreinallthreemodelswhenunidirectionallinksareused(Figure3(d,e,f)).TheoverallcommunicationcostinTwoPowerandRan-domPowermodels(Figure3(g,h))isapproximatelythesamewithorwithoutunidirectionallinks.IntheR&Mmodel(Figure3(i)),theyarestillsimilarforlowerdensity,buttheuseofunidirectionallinksbringsdownthecostabit(upto10%)whenthenodedensityisveryhigh.

workwhenallnodesusethemaximumrange.Usingthisdensityvalueallowsustomeaningfullyevaluatetheconnectivityadvan-tagefromunidirectionallinks.Ahighervalueofdensitywillpro-ducemorenumberofbidirectionallinksandthusbenefitsthecasewithoutunidirectionallinks.Ontheotherhand,alowerdensityvaluewillnotallowustoexplorethewholerangeofconnectivi-ties,asnetworkwillnotgetconnectedforanyrangeassignment.Figure4showsallmetricswithvaryingfractionoflowpowernodesintheTwoPowermodel.Notethatconnectivity(Figure4(a,b)improvesonlyslightly(lessthanafewpercents)byusingunidirectionallinks.Ontheotherhand,theaveragetotalcommu-nicationcost(Figure4(e))improves(uptoabout7%,butmostlylower)whenalargefractionofnodesislowpower;thecostsaresimilarwhenasmallfractionofnodesislowpower.

TheeffectofvariabilityinnoderangesintheRandomPowermodelisshowninFigure5fordifferentvaluesoftheminimumrange.Thereissomenoticeableimprovement(about15%)inthelargestcomponents(Figure5(b))withunidirectionallinkswhenminimumrangeisverysmall.However,forhighervaluesofmin-imumrange,theimprovementsstarttodrop.Thisissomewhatexpectedbecausethevariabilityinnoderangesdecreaseswithin-creaseintheminimumrange.Similarobservationappliesforcom-municationcost(Figure5(e))aswell;thereisupto10%improve-mentwithunidirectionallinkswhentheminimumrangeissmall.Thegeneralobservationfromtheforegoingevaluationsisthatunidirectionallinksprovideonlyincrementalbenefit.Theydonotimproveconnectivityinmostcases.Theydoimproveshortestpathcostingeneral.Butwithper-hopacknowledgments,theoverallbenefitissmallandisrestrictedtoonlycertaindensitiesandradioranges.

2.4.2VariationinRadioRange

Tillnow,inTwoPowerandRandomPowermodels,thevariabil-ityinrangehasbeenfixedandnodedensityhasbeenvaried.Herewestudytheeffectofvariationinrangesforafixeddensity.Wesetthenodedensityto100nodes/sq.kmwhichyieldsaconnectednet-

3.ELIMINATIONOFUNIDIRECTIONAL

LINKSFROMROUTECOMPUTATIONS

Majorityoftheprotocolsdevelopedformultihopwirelessnet-worksassumebidirectionallinks(e.g.,[17],DSDV[27],AODV[28],

15

65.5Avg. shortest path cost54.543.532.521.5

0

With unidirectional linksWithout unidirectional links

Avg. shortest path cost765432

With unidirectional linksWithout unidirectional links

Avg. shortest path cost987654

With unidirectional linksWithout unidirectional links

50100150200250300350400450500

Density (nodes/sq. km)

050

100150200250300350400450500

Density (nodes/sq. km)

050

100150200250300350400450500

Density (nodes/sq. km)

(a)TwoPower

65.5Avg. hop-by-hop ack cost54.543.532.521.5

0

50100150200250300350400450500

Density (nodes/sq. km)

With unidirectional linksWithout unidirectional links

Avg. hop-by-hop ack cost7654320

50

(b)RandomPower

With unidirectional linksWithout unidirectional links

Avg. hop-by-hop ack cost987654

100150200250300350400450500

Density (nodes/sq. km)

0

50

(c)R&M

With unidirectional linksWithout unidirectional links

100150200250300350400450500

Density (nodes/sq. km)

(d)TwoPower

1211Avg. communication cost1098765430

50100150200250300350400450500

Density (nodes/sq. km)

With unidirectional linksWithout unidirectional links

Avg. communication cost14121080

(e)RandomPower

With unidirectional linksWithout unidirectional links

Avg. communication cost18161412108

50100150200250300350400450500

Density (nodes/sq. km)

0

(f)R&M

With unidirectional linksWithout unidirectional links

50100150200250300350400450500

Density (nodes/sq. km)

(g)TwoPower(h)RandomPower(i)R&M

Figure3:Pathcostmetricsinallthreemodelswithvaryingdensity.

TBRPF[24],OLSR[5]).Butforcorrectoperationinthepresenceofunidirectionallinks,theyrequireadditionalmechanismstoelim-inateunidirectionallinksfromroutecomputations.Ourgoalinthissectionistounderstandtheimportanceofsuchmechanismsandtheireffectontheoverallperformanceoftheroutingprotocol.WeinvestigatethisissueusingAODVasacasestudy.Whilegeneralcommentsaredifficulttomake,wedobelievethatotherprotocolswillalsobenefitfromthemechanismswedevelopandourobser-vationsfromtheperformanceevaluation.

ThedestinationonreceivingthefirstcopyofaRREQpacketformsareversepathinthesamewayastheintermediatenodes;italsounicastsaRREPbacktothesourcealongthereversepath.AstheRREPproceedstowardsthesource,itestablishesaforwardpathtothedestinationateachhop.AODValsoincludesmechanismsforerasingbrokenroutesfollowingalinkfailure,andforexpiringoldandunusedroutes.Wedonotdiscussthem,astheyarenotrelevanthere.

Theaboveroutediscoveryprocedurerequiresbidirectionallinksforcorrectoperation.OnlythenRREPcantraversebacktothesourcealongareversepathandformaforwardpathtothedes-tinationatthesource.ManycommonMACprotocolschecklinkbidirectionalityonlyforunicasttransmissions.Forexample,IEEE802.11DCFMAC[14]protocolusesanRTS-CTS-Data-ACKex-changeforunicasttransmissions;receiptofCTSfollowinganRTSorACKfollowingthedatatransmissiononalinkensuresthatitisbidirectional.Broadcasttransmissions,however,cannotdetectthepresenceofunidirectionallinks.SinceAODVRREQpacketstyp-icallyuselink-layerbroadcasttransmissions,someunidirectionallinkscangoundetectedandasaresultreversepathsmaycontainunidirectionallinks(directedawayfromthesource).RREPtrans-missionsalongsuchreversepathswillfail,astheyareunicast.RoutediscoveryfailswhennoneoftheRREPsreachthesource.

3.1AODVProtocol

AODVisanon-demandroutingprotocol.Itislooselybasedonthedistance-vectorconcept.Inon-demandprotocols,nodesobtainroutesonanasneededbasisviaaroutediscoveryprocedure.Routediscoveryworksasfollows.Wheneveratrafficsourceneedsaroutetoadestination,itinitiatesaroutediscoverybyfloodingaroutere-quest(RREQ)forthedestinationinthenetworkandthenwaitsforaroutereply(RREP).WhenanintermediatenodereceivesthefirstcopyofaRREQpacket,itsetsupareversepathtothesourceus-ingtheprevioushopoftheRREQasthenexthoponthereversepath.Inaddition,ifthereisavalidrouteavailableforthedesti-nation,itunicastsaRREPbacktothesourceviathereversepath;otherwise,itre-broadcaststheRREQpacket.DuplicatecopiesoftheRREQareimmediatelydiscardeduponreceptionateverynode.

16

Strongly connected components765432100

0.2

With unidirectional linksWithout unidirectional links

Largest strongly connected component810095908580757065600

0.2

With unidirectional linksWithout unidirectional links0.40.60.8Fraction of low power nodes

1

0.40.60.8Fraction of low power nodes

1

(a)

76.5

Avg. hop-by-hop ack costAvg. shortest path cost65.554.543.532.5

0

0.2

With unidirectional linksWithout unidirectional links0.40.60.8Fraction of low power nodes

1

76.565.554.543.532.5

0

0.2

With unidirectional linksWithout unidirectional links0.40.60.8Fraction of low power nodes

1

(b)

1413Avg. communication cost121110987650

0.2

With unidirectional linksWithout unidirectional links0.40.60.8Fraction of low power nodes

1

(c)(d)(e)

Figure4:TwoPowermodel:connectivityandpathcostmetricswithvaryingfractionoflowpowernodes.

Strongly connected components18161412108200

With unidirectional linksWithout unidirectional links

Largest strongly connected component2010095908580757065600

With unidirectional linksWithout unidirectional links50100150200Minimum transmission range (m)

250

50100150200Minimum transmission range (m)

250

(a)

6.56Avg. shortest path cost5.554.543.532.5

0

50

100

150

200

250

6.56Avg. hop-by-hop ack cost5.554.543.532.5

0

50

100

150

200

(b)

1312Avg. communication cost11109876

250

50

50

100

150

200

250

With unidirectional linksWithout unidirectional linksWith unidirectional linksWithout unidirectional linksWith unidirectional linksWithout unidirectional links

Minimum transmission range (m)Minimum transmission range (m)Minimum transmission range (m)

(c)(d)(e)

Figure5:RandomPowermodel:connectivityandpathcostmetricswithvaryingvaluesofminimumrange.

17

SADSettingittoasmallvaluemayreducetheeffectivenessofthetechnique.Ontheotherhand,settingittoaverylargevalueaffectsconnectivitywhentherearemanyshort-termunidi-rectionallinks.

HelloInthecontrasttotheBlackListingtechnique,thistechnique

proactivelyeliminatesunidirectionallinksbyusingperiodicone-hopHellopackets.AsimilarideahasalsobeenusedinOLSR[5]torecordonlybidirectionallinks.IneachHellopacket,anodeincludesallnodesfromwhichitcanhearHel-los(i.e,itssetofneighbors).IfanodedoesnotfinditselfintheHellopacketfromanothernode,itmarksthelinkfromthatnodeasunidirectional.JustasintheBlackListingtech-nique,everynodeignoresRREQpacketsthatcomeviasuchunidirectionallinks.Notethatthishellopacketsareidenti-caltotheAODVhellopackets[29]exceptfortheadditionalneighborhoodinformation.

Theadvantageofthistechniqueisthatitautomaticallyde-tectsunidirectionallinksbyexchangingHellopackets.Buttheperiodic,largeHellopacketscanbeasignificantover-head.AlthoughthesizeoftheHellopacketsmaybereducedbyusing“differential”Hellos[24],theperiodicpacketover-headisstillaconcern.However,insituationswhenHellosmustbeusedformaintaininglocalneighborhoodandtode-tectlinkfailures(e.g.,whenthelinklayercannotprovideanyfeedbackaboutlinkfailures),incrementaloverheadforunidirectionallinkdetectionmaynotbeverymuch.ReversePathSearchUnliketheabovetwotechniques,thistech-niquedoesnotexplicitlyremoveunidirectionallinks.In-stead,ittakesacompletelydifferentapproach.Eachunidi-rectionallinkisviewedasa“fault”inthenetworkandmulti-plepathsbetweenthenodesarediscoveredtoperformfault-tolerantrouting.Thebasicideaisasfollows.DuringtheRREQflood,multipleloop-freereversepathstothesourceareformedatintermediatenodesandthedestination.Us-ingadistributedsearchprocedure,multipleRREPsexplorethismultipathroutingstructureinanattempttofindoneormorebidirectionalpathsbetweenthesourceandthedestina-tion.Thissearchprocedureissomewhatsimilartothewell-knowndepthfirstsearchalgorithm.WhenRREPfailsatanode,thecorrespondingreversepathiserasedandtheRREPisretriedalonganalternatereversepath,ifoneisavailable;whenallreversepathsfailatanodeduringthisprocess,thesearchbacktrackstoupstreamnodes2ofthatnodewithre-specttothesourceandtheytoofollowthesameprocedure.Thiscontinuesuntileitheroneormorebidirectionalpathsarefoundatthesource,orallreversepathsareexplored.Thistechniqueisdescribedinmoredetailinthefollowingsubsection.

BCFigure6:Alllinksarebidirectionalexcepttheonewithanar-row.receivesfirstcopyofRREQfromforviapath,andformsareversepath;subsequentRREPtrans-missionfromtowillfail.Thisscenariowillrepeatforlaterroutediscoveryattemptsfrom.Thealternate,longerpath

)willneverbediscovered.(

Itcanfailevenwhenthereisabidirectionalpathbetweenthesource

andthedestination.ThisisbecauseonlythefirstcopyofaRREQpacket—whichmayarriveviaaunidirectionalpathfromthesource—isconsideredbyintermediatenodesandthedestinationtoformreversepathsandsendbackRREPs;latercopiesaresimplydis-cardedeveniftheytakebidirectionalpaths.SeeFigure6foranillustration.

Intheworstcase,thisscenariowillresultinrepeatedroutedis-coveryfailures.Thusadditionalmechanismsareneededtoavoidtheaboveprobleminnetworkswithunidirectionallinks.

3.2TechniquesforHandlingUnidirectional

LinksinAODV

Inthefollowingwedescribethreetechniquestoalleviatethisproblem.Thefirsttwotechniques—“BlackListing”and“Hello”—areknowntechniques.Thethirdtechnique,“ReversePathSearch”isourcontributioninthispaper.

BlackListingThistechniquereactivelyeliminatesunidirectional

links.ItisincludedinthelatestAODVspecification[29].Here,wheneveranodedetectsaRREPtransmissionfailure,itinsertsthenexthopofthefailedRREPintoa“blacklist”set.Theblacklistsetatanodeindicatesthesetofnodesfromwhichithasunidirectionallinks.Forexample,inFig-ure6nodewillblacklistnode.Laterwhenanodere-ceivesaRREQfromoneofthenodesinitsblacklistset,itdiscardstheRREQtoavoidformingareversepathwithunidirectionallink.ThisgivesachanceforRREQfromanalternatepath(e.g.,viainFigure6)toprovideadifferentreversepath.BLACKLISTTIMEOUTspecifiestheperiodforwhichanoderemainsintheblacklistset.Bydefault,thisperiodissettotheupperboundofthetimeittakestoperformthemaximumallowednumberofroutediscoveryattemptsbyasource.

3.3ReversePathSearchTechnique

Inapriorwork[19],wehaveinvestigatedamultipathextensiontoAODV,calledAOMDV,whererouteupdaterulestomaintainmultipleloop-freepathsaredescribed.WeusethesameAOMDVrouteupdateruleshereintheReversePathSearchtechniquetomain-tainmultipleloop-freepathstoadestinationateverynode.

IntheReversePathSearchalgorithm,allRREQcopiesincludingduplicatesareexaminedatintermediatenodesandthedestinationforpossiblealternatereversepathstothesource.However,reverseAnodeXisupstreamofanodeYwithrespecttoanodeDifYappearsonapathfromXtoD.Conversely,YisadownstreamnodeofXforD.

Thistechniqueissimpleandhaslittleoverheadwhentherearefewunidirectionallinks.However,whentherearemanyunidirectionallinks,thisapproachisinefficientbecausetheselinksareblacklistediterativelyoneatatime.Severalroutediscoveriesmaybeneededbeforeabidirectionalpath,ifex-ists,isfound.Anotherdifficultywiththistechniqueisinset-tinganappropriatevaluefortheBLACKLISTTIMEOUT.

18

GHBSACEDFFigure7:Demonstrationofreversepathsearch.Multiplere-formedduringtheRREQfloodversepathstothesource

areshown;someofthereversepathscontainunidirectional

.ConsidertheRREPpropagationlinkssuchas

via.Thetransmissionfromtofailscausing

erasesthereversepathviaaBRREPtransmissionat.

andtransmitsaRREPtoinordertoexplorethereversepath

.Thisalsofails,causingtotransmitBRREP.

thenerasesthereversepathviaandtransmitsRREPtoinordertoexplorepath.Thiswillbesuccessful.

pathsareformedonlyfromthosecopiesthatsatisfyrouteupdaterulesandprovideloop-freepaths[19].Othercopiesaresimplydiscarded.NotethatthisisdifferentfrombasicAODVwhereonlythefirstcopyislookedat.

WhenaRREQcopyatanintermediatenodecreatesorupdatesareversepath,andtheintermediatenodehasnovalidpathtothedestination,theRREQcopyisre-broadcastedprovideditisthefirstcopythatyieldsareversepath;thisissomewhatsimilartobasicAODVwhereonlyfirstcopiesofRREQareforwardedtopreventloopingduringtheflood.Onthecontrary,iftheintermediatenodedoeshaveavalidpathtothedestination,itcheckswhetherornotaRREPhasalreadybeensentforthisroutediscovery.Ifnot,itsendsbackaRREPalongthenewlyformedreversepathandremembersthenexthopusedforthisRREP;otherwise,theRREQcopyisdropped.

WhenthedestinationreceivescopiesofRREQs,italsoformsreversepathsinthesamewayasintermediatenodes.However,un-likeintermediatenodes,thedestinationsendsbackaRREPalongeachnewreversepath.Multiplerepliesfromdestinationallowex-plorationofmultiplereversepathsconcurrently—thusspeedingupthesearchforabidirectionalpath.Incontrast,allowingmulti-pledestinationrepliesinbasicAODVhaslittlebenefitunlessthoserepliestakenon-overlappingpathstothesource.Thisisbecausein-termediatenodeshaveatmostonereversepathbacktothesource.WhenanintermediatenodereceivesaRREP,itfollowsrouteupdaterulesin[19]toformaloop-freeforwardpathtothedesti-nation,ifpossible;else,theRREPisdropped.Supposingthattheintermediatenodeformstheforwardpathandhasoneormorevalidreversepathstothesource,itchecksifanyofthosereversepathswaspreviouslyusedtosendaRREPforthisroutediscovery.Ifnot,itchoosesoneofthosereversepathstoforwardthecurrentRREP,andalsoremembersthenexthopforthatreversepath;otherwise,theRREPissimplydropped.

RREPtransmissionfailure(asaresultoftransmissionoveraunidirectionallink,forexample)atanintermediatenoderesultsinthatnodeerasingthecorrespondingreversepath,andretryinganalternatereversepath.Ifnosuchalternatepathisavailable,thein-

termediatenodetransmits(broadcasttransmission)anewmessagecalledthe“backtrackroutereply”(BRREP)toinformitsupstreamnodes(withrespecttothesource)totryotherreversepathsatthosenodes.ABRREPisalsogeneratedbyanintermediatenode,ifthatnodedoesnothaveanyreversepathuponaRREPreception.OnreceivingaBRREP,anintermediatenodeupstreamoftheBRREPsource(meaningithaslastsentaRREPtotheBRREPsourceforthisroutediscovery)takesasimilaractionasonaRREPfailure;nodesthatarenotupstreamoftheBRREPsourcesimplydiscardthepacketonreception.WhenthedestinationencountersaRREPfailure,orreceivesaBRREP,itonlyerasescorrespondingreversepaths.SeeFigure7foranillustration.

Notethattheaboveprocedureisguaranteedtoterminate.Toseethis,observethateveryRREPfailureerasesthecorrespondingreversepath.Soreversepathscannotbeexploredindefinitelysincethereareonlyfinitenumberofthem.Ontheotherhand,alternatereversepathsarenotexploredattheintermediatenodesaslongasRREPssuccessfullygothrough.Alsonotethatintheabovedescription,somedetailshavebeenomittedforthesakeofbrevity.Forinstance,algorithmsactionstocopewithBRREPlossarenotmentioned.

Multipleloop-freereversepathsusedbytheabovealgorithmareingeneralasubsetofallpossiblereversepaths.Thus,sometimesitispossiblethatthemultiplereversepathsexploredbythealgorithmdonotincludeabidirectionalpathbetweensourceanddestinationalthoughsuchapathexists.Butindensenetworksthatwecon-sider,oftenthereismorethanonebidirectionalpathandtheabovepossibilityisrare.

Finally,multiplerepliesfromthedestinationinthealgorithmyieldmultipleforwardpathsatintermediatenodesandthesource.Thisabilitytocomputemultiplebidirectionalpathsinasingleroutediscoveryishighlybeneficialinmobilenetworksforefficientre-coveryfromroutebreaks.

3.4PerformanceEvaluation

Inthissectionweevaluatetheperformanceofthethreetech-niquesdescribedintheprevioussubsectionrelativetobasicAODVundervaryingnumberofunidirectionallinksandnodespeeds.Twoprimarygoalsfromthisevaluationare:(i)tounderstandtheim-pactofunidirectionallinksonbasicAODVperformance;and(ii)toevaluatetheeffectivenessofthethreetechniquesinhandlinguni-directionallinks.

3.4.1SimulationEnvironment

Weuseadetailedsimulationmodelbasedonns-2[8].TheMonarchresearchgroupinCMUdevelopedsupportforsimulat-ingmulti-hopwirelessnetworkscompletewithphysical,datalinkandMAClayermodels[4]onns-2.Thedistributedcoordinationfunction(DCF)ofIEEE802.11[14]forwirelessLANsisusedastheMAClayer.Theradiomodelusescharacteristicssimilartoacommercialradiointerface,Lucent’sWaveLAN.WaveLANisashared-mediaradiowithanominalbit-rateof2Mb/sandanom-inalradiorangeof250meters.Moredetailsaboutthesimulatorcanbefoundin[4,8].Thissimulatorhasbeenusedforevaluat-ingperformanceofearlierversionsoftheAODVprotocol(e.g.,[4,30]).

TheAODVmodelinoursimulationsisbasedonthelatestpro-tocolspecification[29],exceptthattheexpandingringsearchisdisabledforallprotocolvariations.Notethattheexpandingringsearchintroducesanadditionalreasonforroutediscoveryfailures,i.e.,whenasmallerringsize(TTLvalue)isusedforthesearch.Thismakesanalysissomewhatdifficult.SoinourAODVmodel,asourcedoesnetwork-wideroutediscoveriesappropriatelyspaced

19

intimeuntileitherarouteisobtainedoramaximumretrylimit(3)isreached;whenthelimitisexceeded,sourcereportstotheap-plicationthatthedestinationisunreachableanddropsallbufferedpacketsforthedestination—wetermthiseventas“routesearchfailure”inourevaluations.Besides,linklayerfeedbackisusedtodetectlinkfailuresinallprotocolvariations.The802.11MAClayerreportsalinkfailurewhenitfailstoreceiveCTSafterseveralRTSattempts,ortoreceiveACKafterseveralretransmissionsofDATA.NotethatintheHellotechnique,linkfailuresaredetectedusinghellomessagesaswellasthefeedback,whicheverdetectsthelinkbreakagefirst.

TwoPowermodelisusedtocreateunidirectionallinks,primarilybecauseitdoesnotperformpowercontrol.Useofpowercontrolmakestheanalysisheredifficultasthenumberofunidirectionallinksthenwillbecomeheavilydependentonthechoiceoftheac-tualpowercontrolalgorithmandthefrequencyatwhichthealgo-rithmisinvoked.Notethatthefrequencyofinvocationdidnotplayanyroleinourearlierevaluationsasweusedonlystatictopolo-gies.Wemodifiedthens-2simulatortoallowvariabletransmis-sionrangesfornodes.Inallourexperiments,shortandlongrangesintheTwoPowermodelaresetto125mand250m,respectively.Wevarythefractionoflowpowernodestovarythenumberofunidirectionallinks.

Weconsider100nodenetworkswithnodesinitiallyplacedatrandominarectangularfieldofdimensions575mx575m.Thefieldsizeischosentoguaranteeaconnectednetworkacrossthepa-rameterspace.Weuserandomwaypointmodel[4]tomodelnodemovements.Pausetimeisalwayssettozeroandthemaximumspeedofthenodesischangedtochangemobility.

TrafficpatterninourexperimentsconsistsoffixednumberofCBRconnections(20)betweenrandomlychosensource-destinationpairsandeachconnectionstartsatarandomtimeatthebeginningofthesimulationandstaysuntiltheend.EachCBRsourcesendspackets(eachofsize512bytes)atafixedrateof4packets/s.

Allourexperimentsuse500secondsimulationtimes.Inthecaseofstaticnetworks,eachdatapointintheplotsisanaverageofatleast50runswithdifferentrandomlygeneratedinitialnodepositionsandrangeassignmentsineachrun.Inthemobilityexper-iments,weaverageover25randomlygeneratedmobilityscenariosandrangeassignments.Identicalscenariosareusedacrossallpro-tocolvariations.

3.4.2PerformanceMetrics

Weevaluatefourkeyperformancemetrics:(i)Packetdeliveryfraction—ratioofthedatapacketsdeliveredtothedestinationtothosegeneratedbytheCBRsources;(ii)Averageend-to-enddelayofdatapackets—thisincludesallpossibledelayscausedbybufferingduringroutediscovery,queuingdelayattheinterface,retransmissiondelaysattheMAC,propagationandtransfertimes;(iii)Routesearchfailures—totalnumberofroutesearchfailureevents(seeprevioussubsection)atsources;(iv)Normalizedroutingload—thenumberofroutingpackets“transmitted”perdatapacket“delivered”atthedestination.Eachhop-wisetransmissionofaroutingpacketiscountedasonetransmission.

3.4.3SimulationResults

Wepresenttwosetsofexperiments.Inthefirstset,thenetworkisstaticandthenumberofunidirectionallinksisvaried.Inthesecondset,nodemobilityisconsidered.Figure8showsthepacketdeliveryfraction,averagedelay,andtheroutesearchfailuresasafunctionofthenumberofunidirectionallinks.Wechangethefractionoflowpowernodesfrom0to0.5toincreasethenumberofunidirectionallinks.Withincreaseinunidirectionallinks,basic

AODVdropsthehighestnumberofpackets(asmanyas20%)andalsoexperiencesmostnumberofroutesearchfailures(Figure8(a,c)).ThisisbecausethebasicAODVprotocoldoesnottakenoticeoftheunidirectionallinksandrepeatedlyperformsroutediscover-ieswithoutanybenefit.Notethataftereveryroutesearchfailure,allpacketsbufferedforthedestinationatthesourcearedropped.ThedropinpacketdeliveryislessdrasticforBlackListingcom-paredtobasicAODV.Butitstilldropsasmanyas14%ofthepack-etsbecauseofitsslownessineliminatingunidirectionallinksonebyone.Itstillhasalargenumberofroutesearchfailures;butper-formssomewhatbetterthanbasicAODV.ThedelayperformanceofAODVandBlackListing(Figure8(b))issimilarasroutedis-coverylatencydominatesthedelayinbothcases.

BothHelloandReversePathSearchdeliveralmostallpacketsal-ways(Figure8(a)),asbothareabletosuccessfullyfindroutesalways(Figure8(c)).However,theirdelayperformance(Figure8(b))isquitedifferent.DelayfortheHellotechniqueissimilartoba-sicAODVandBlackListing,whileReversePathSearchhassignifi-cantlylowerdelaythanothers.ThisshowsthatReversePathSearchcaneffectivelyovercomeunidirectionallinksbyexploringmultiplereversepaths.However,thedelayperformanceoftheHellotech-niqueiscounter-intuitive.Onewouldnormallyexpecttheperfor-manceofHellotobeindependentofunidirectionallinksbecauseitproactivelyeliminatesunidirectionallinksinthebackgroundwith-outburdeningAODVroutediscoverymechanism.Belowwewillanalyzethereasonbehindthisunexpectedbehavior.

Byadditionalinstrumentation,wefoundthatthesharpincreaseinroutediscoveryattemptswithincreaseinunidirectionallinks(Figure9(a))explainsthedelayperformanceoftheHellotech-nique.Whatismoreinterestingisthereasonbehindtheriseinroutediscoveriesitself.Thiswefoundwasbecauseofanundesir-ableinteractionofthisprotocolwiththe802.11MAClayer.WenoticedthatingeneralMACcollisionsincreasedwithincreaseinthenumberofunidirectionallinks.Thisisbecauseofthehiddenterminalinterferenceviaunidirectionallinks,andtheinsufficiencyoftheRTS-CTShandshakein802.11MACtoavoidsuchhiddenterminals(See[32]forasimilarobservation).FortheHellotech-nique,however,theincreaseincollisionsisquitedramatic(Figure9(c))becauseoflargeandperiodic(everysecond)broadcasthellopackets.Consequently,theefficiencyoftheMAClayerisnega-tivelyaffectedresultinginmorenumberofunsuccessfultransmis-sionsandtriggeringoflinkfailuresignalstotheroutingprotocol.Suchlinkfailuresignalscauseroutebreaks(Figure9(b)).NotethatinthebasicAODVprotocol,everyroutebreakwillresultinanewroutediscoveryattempt.SincetheHellotechniqueisidenticaltobasicAODVexceptfortheadditionalhelloexchanges,itdoesmorenumberofroutediscoveryattemptsasunidirectionallinksgrowinnumber.NotethatbasicAODVandBlackListingarenotaffectedverymuchbytheabovephenomenon,astheyspendmostoftheireffortfindingaroute.EventhoughReversePathSearchissubjecttothisproblemtosomeextent,theavailabilityofredundantforwardpathspreventsabigdropinitsperformance.

Figure10showstheroutingloadcomparisonforthefourproto-cols.Overall,ReversePathSearchhasthelowestoverheadfollowedbyBlackListing,basicAODVandHello.ThehighoverheadoftheHellotechniqueisexpectedbecauseoftheperiodichellomessages.Also,lowroutingoverheadinReversePathSearchindicatesthatthehigherperroutediscoverycostsinReversePathSearchduetomore(backtrack)routerepliesisverywelloffsetbythesignificantre-ductioninroutediscoveries(Figure9(a)).Relativeperformanceintermsofthebyteoverhead(notshown)issameasabove.Insum-mary,theReversePathSearchtechniqueallowsforamuchmoreef-fectiveeliminationofunidirectionallinksfromroutecomputations

20

10.95

Avg. delay (ms)0.90.850.80.75

Basic AODVBlackListing

Hello

ReversePathSearch

0

100

200

300400500Unidirectional links

600

700

120100806040200

Packet delivery fractionRoute search failuresBasic AODVBlackListing

Hello

ReversePathSearch

1009080706050403020100

Basic AODVBlackListing

Hello

ReversePathSearch

0100200

300400500Unidirectional links

6007000100200

300400500Unidirectional links

600700

(a)Packetdeliveryfraction(b)Averagedelay(c)Routesearchfailures

Figure8:Performancewithvaryingnumberofunidirectionallinks.

400350Route discovery attempts3002502001501005000

100

200

300

400

500

600

700

Route breaksHelloReversePathSearch

350300

MAC collisions2502001501005000

100

200

300

400

500

600

700

Hello300002500020000150001000050000

Hello0100200300400500600700

Unidirectional linksUnidirectional linksUnidirectional links

(a)Routediscoveries(b)Routebreaks(c)MACcollisions

Figure9:Routediscoveries,routebreaksandMACcollisionsfortheHellotechniquewithvaryingnumberofunidirectionallinks.

startstoplayadominantrole.ReversePathSearch,however,con-tinuestoperformsignificantlybetterthantherest.Withthebuilt-inredundancyintheroutediscoveryprocess,itnotonlyeliminatesunidirectionallinksfromtheroutecomputationsbyexploringalter-natereversepaths,butalso,inasimilarvain,avoidsbrokenreversepathsduetomobility(Figure11(c)).Inaddition,bycomputingmultipleforwardpathsatthesourceandintermediatenodes,itob-viatestheneedforfrequentroutediscoveryattemptsinresponsetoroutebreakscausedbynodemobility.

600

700

3Normalized routing load2.521.510.50

Basic AODVBlackListing

Hello

ReversePathSearch

0100200

300400500Unidirectional links

(a)Routingload

4.RELATEDWORK

Althoughmanycommonroutingprotocolsassumebidirectionallinks,thereisstillconsiderableamountofliteratureavailableonroutingusingunidirectionallinks(e.g.,[1,10,39,31,2]).Theseprotocolsaremainlytargetedtowardstwonetworkenvironments,namely,mixedsatelliteandterrestrialnetworks,andmultihopwire-lessnetworks,whereunidirectionallinkscommonlyoccur.OftheseveralunicastroutingproposalsformultihopwirelessnetworkswithintheIETFMANETworkinggroup[18],onlyDSR[15]andFSR[9]canfullysupportunidirectionallinks,whileZRP[12,11]andTORA[25]canpartiallysupportunidirectionallinks.Therehavealsobeenattemptstoextendexistingprotocolstosupportuni-directionallinks[33,38,16].Butnoneoftheaboveeffortscontainanysimulationorexperimentalevaluationoftheimpactofunidi-rectionallinksonroutingperformanceinrealisticscenarios.

Supportforunidirectionallinksbelowthenetworklayeralsore-ceivedsomeattention.Link-layertunnelingapproachhasbeenex-ploredin[7,23].Themainmotivationbehindthisapproachistohidetheunidirectionalnatureofalinkfromhigherlayerpro-tocolssothattheycanoperateoverunidirectionallinkswithoutanymodifications.Thisisbasicallyachievedbyformingareverse

Figure10:Routingloadwithvaryingnumberofunidirectionallinks.

comparedtoBlackListing,howeverwithmuchloweroverheadcostcomparedtoHello.

TheeffectofnodemobilityonallmetricsisshowninFigure11.Herewevarythemaximumnodespeedbetween0and20m/s.Tostresstheprotocols,wesetthefractionoflowpowernodesto0.5whichresultsinthemostnumberofunidirectionallinksinstaticnetworks.Mobilityalsoaffectsthenumberanddurationofunidi-rectionallinks.Butthesearesomewhathardtoquantifyinmobilenetworks.Asexpected,performanceintermsofpacketdelivery,delayandoverheaddegradesforallprotocolswithincreaseinmo-bility(Figure11(a,b,d)).However,observationsabouttherelativeperformanceofthefourprotocolsprettymuchremainsameasinthestaticnetworkcase.NotethatthedifferenceinroutingloadbetweenbasicAODV,BlackListing,andHelloshrinksasmobility

21

tunnel(possiblyviaamultihoppath)foreachunidirectionallinkusinginformationgatheredbytheroutingprotocol.In[36],analternativeapproachtotunneling,butwithasimilargoalispro-posed.Theideahereistointroduceasub-layerbeneaththenet-worklayertofindandmaintainmultihopreverseroutesforeachunidirectionallink.Thereisalsosomeworkonusingmultihopacknowledgementstodiscoverunidirectionallinks[26],andGPS-basedapproachesforenablinglink-levelacknowledgements[16]overunidirectionallinks.

Workonchannelaccessprotocolsformultihopwirelessnet-workswithunidirectionallinksisstartingtogetattention[35,3].Ramanathan[35]makesanimportantobservationthatmanyuni-directionallinkshurtchannelaccessprotocolperformance.Thisissomewhatrelatedtoourobservationthatutilizingunidirectionallinksdoesnotprovideanysignificantadditionalbenefit.

5.CONCLUSIONS

Unidirectionallinkscommonlyoccurinwirelessadhocnet-worksbecauseofthedifferencesinnodetransceivercapabilitiesorperceivedinterferencelevels.Unidirectionallinkscanpresum-ablybenefitroutingbyprovidingimprovednetworkconnectivityandshorterpaths.Butpriorworkindicatesthatroutingoveruni-directionallinksusuallycauseshighoverheads.Withthisinmind,weevaluatedperformanceadvantages,intermsofconnectivityandpathcosts,ofroutingusingunidirectionallinksunderidealcon-ditions.Ourevaluationsweredonewithrespecttothreevariabletransmissionrangeassignmentmodelsthatreflectsomerealisticnetworkscenarioswithunidirectionallinks.Mainconclusionfromthisstudyisthatunidirectionallinksprovideonlyincrementalben-efit.Thus,protocolsthatavoidunidirectionallinksdemandacloserlook.

Manycommonroutingprotocols,however,simplyassumethatlinksarebidirectional.Theywillrequiresomeadditionalproto-coloperationstodetectandeliminateunidirectionallinksfromroutecomputations.Toassessthedifficultyofdoingthis,wehavepresentedacasestudywiththeAODVprotocolwherethreesuchtechniquesarepresentedandevaluated.ItisobservedthattheRe-versePathSearchtechniqueperformsthebestbecauseofitsabilitytoexploremultiplepaths.Itexhibitsadualadvantage,bothintermsofimmunityfromunidirectionallinksandfrommobility-inducedlinkfailures.WhilethiscasestudyhasbeenperformedonlyforAODV,weexpectthatotherprotocolsthatsharecertaincharacter-isticswithAODV,suchastheon-demandnatureorthedistancevectorframework,willalsobenefitfromtheseideas.

Besides,ourperformancestudyalsorevealedthat802.11MACperformancedegradesinthepresenceofunidirectionallinks.Asimilarobservationwasalsomadein[32].Theseobservationssug-gesttheneedformoreefficientMACprotocolstohandleunidi-rectionallinks,assuchlinksmaybeinevitableincertainadhocnetworkscenarios(forexample,anetworkofnodeswithheteroge-nouspowers).

Acknowledgments

ThisworkispartiallysupportedbyNSFCAREERgrantACI-00961-86andNSFnetworkingresearchgrantANI-00962.MaheshMarinaissupportedbyanOBRcomputingresearchawardintheECECSdepartment,UniversityofCincinnati.

6.REFERENCES

[1]Y.AfekandE.Gafni.DistributedAlgorithmsforUnidirectional

Networks.SIAMJournalofComputing,23(6):1152–1178,1994.

[2]L.BaoandJ.J.Garcia-Luna-Aceves.Link-stateRoutingin

NetworkswithUnidirectionalLinks.InProceedingsofInternationalConferenceonComputerCommunicationsandNetworks(IC3N),pages358–363,1999.

[3]L.BaoandJ.J.Garcia-Luna-Aceves.ChannelAccessSchedulingin

AdHocNetworkswithUnidirectionalLinks.InProceedingsofWorkshoponDiscreteAlgorithmsandMethodsforMobileComputingandCommunications(DIALM),pages9–18,2001.[4]J.Broch,D.Maltz,D.Johnson,Y.-C.Hu,andJ.Jetcheva.A

PerformanceComparisonofMulti-HopWirelessAdHocNetworkRoutingProtocols.InProceedingsofIEEE/ACMMOBICOM,pages85–97,1998.

[5]T.Clausenetal.OptimizedLinkStateRoutingProtocol.

http://www.ietf.org/internet-drafts/draft-ietf-manet-olsr-06.txt,Mar2002.IETFInternetDraft(workinprogress).

[6]S.R.Das,R.Castaneda,andJ.Yan.Simulation-basedPerformance

EvaluationofRoutingProtocolsforMobileAdhocNetworks.ACM/BaltzerMobileNetworksandApplications(MONET),5(3):179–1,2000.

[7]E.Duros,W.Dabbous,H.Izumiyama,N.Fujii,andY.Zhang.A

Link-LayerTunnelingMechanismforUnidirectionalLinks.RFC3077,2001.

[8]K.FallandK.Varadhan(Eds.).ThensManual.

http://www.isi.edu/nsnam/ns/ns-documentation.html,2002.[9]M.Gerla,X.Hong,andG.Pei.FisheyeStateRoutingProtocol

(FSR)forAdHocNetworks.

http://www.ietf.org/internet-drafts/draft-ietf-manet-fsr-02.txt,Dec2001.IETFInternetDraft(workinprogress).

[10]M.Gerla,L.Kleinrock,andY.Afek.ADistributedRouting

AlgorithmforUnidirectionalNetworks.InProceedingsofIEEEGLOBECOM,1983.

[11]Z.J.Haas,M.R.Pearlman,andP.Samar.TheInterzoneRouting

Protocol(IERP)forAdHocNetworks.

http://www.ietf.org/internet-drafts/draft-ietf-manet-zone-ierp-01.txt,June2001.IETFInternetDraft(workinprogress).

[12]Z.J.Haas,M.R.Pearlman,andP.Samar.TheIntrazoneRouting

Protocol(IARP)forAdHocNetworks.

http://www.ietf.org/internet-drafts/draft-ietf-manet-zone-iarp-01.txt,June2001.IETFInternetDraft(workinprogress).

[13]L.Hu.TopologyControlforMultihopPacketRadioNetworks.IEEE

TransactionsonCommunications,41(10):1474–1481,1993.

[14]IEEEStandardsDepartment.WirelessLANmediumaccesscontrol

(MAC)andphysicallayer(PHY)specifications,IEEEstandard802.11–1997.

[15]D.B.Johnson,D.A.Maltz,Y.Hu,andJ.G.Jetcheva.TheDynamic

SourceRoutingProtocolforMobileAdHocNetworks(DSR).http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-07.txt,Feb2002.IETFInternetDraft(workinprogress).

[16]D.Kim,C.K.Toh,andY.Choi.OnsupportingLinkAsymmetryin

MobileAdHocNetworks.InProceedingsofIEEEGLOBECOM,pages2798–2803,2001.

[17]G.Lauer.Packet-RadioRouting.InM.Steenstrup,editor,Routingin

CommunicationNetworks,chapter11.PrenticeHall,1995.[18]J.MackerandS.Corson.MobileAdhocNetworks(MANET).

http://www.ietf.org/html.charters/manet-charter.html,1997.IETFWorkingGroupCharter.

[19]M.K.MarinaandS.R.Das.On-demandMultipathDistanceVector

RoutinginAdHocNetworks.InProceedingsofIEEEInternationalConferenceonNetworkProtocols(ICNP),pages14–23,2001.[20]J.P.Monks,V.Bharghavan,andW.W.Hwu.APowerControlled

MultipleAccessProtocolforWirelessPacketNetworks.InProceedingsofIEEEINFOCOM,pages219–228,2001.[21]J.Moy.OSPFversion2.RFC1247,1991.

[22]S.Narayanaswamy,V.Kawadia,R.S.Sreenivas,andP.R.Kumar.

PowerControlinAd-HocNetworks:Theory,Architecture,AlgorithmandImplementationoftheCOMPOWProtocol.In

ProceedingsofEuropeanWirelessConference,pages156–162,2002.[23]S.NesargiandR.Prakash.ATunnelingApproachtoRoutingwith

UnidirectionalLinksinMobileAd-HocNetworks.InProceedingsofInternationalConferenceonComputerCommunicationsandNetworks(IC3N),pages522–527,2000.

22

[24]R.Ogier,F.L.Templin,B.Bellur,andM.G.Lewis.Topology

BroadcastBasedonReverse-PathForwarding(TBRPF).

http://www.ietf.org/internet-drafts/draft-ietf-manet-tbrpf-05.txt,Mar2002.IETFInternetDraft(workinprogress).

[25]V.ParkandS.Corson.Temporally-orderedroutingalgorithm

(TORA)version1functionalspecification.

http://www.ietf.org/internet-drafts/draft-ietf-manet-tora-spec-04.txt,July2001.IETFInternetDraft(workinprogress).

[26]M.R.Pearlman,Z.J.Haas,andB.P.Manvell.UsingMulti-Hop

AcknowledgementstoDiscoverandReliablyCommunicateoverUnidirectionalLinksinAdHocNetworks.InProceedingsofWirelessCommunicationsandNetworkingConference(WCNC),pages532–537,2000.

[27]C.E.PerkinsandP.Bhagwat.HighlyDynamic

Destination-SequencedDistance-VectorRouting(DSDV)forMobileComputers.InProceedingsofACMSIGCOMM,pages234–244,1994.

[28]C.E.PerkinsandE.M.Royer.AdHocOn-DemandDistanceVector

Routing.InProceedingsofIEEEWorkshoponMobileComputingSystemsandApplications(WMCSA),pages90–100,1999.[29]C.E.Perkins,E.M.Royer,andS.R.Das.AdhocOn-Demand

DistanceVector(AODV)Routing.

http://www.ietf.org/internet-drafts/draft-ietf-manet-aodv-10.txt,Jan2002.IETFInternetDraft(workinprogress).

[30]C.E.Perkins,E.M.Royer,S.R.Das,andM.K.Marina.

PerformanceComparisonofTwoOn-demandRoutingProtocolsforAdHocNetworks.IEEEPersonalCommunications,8(1):16–28,2001.

[31]C.Pomalaza-Raez.ADistributedRoutingAlgorithmforMultihop

PacketRadioNetworkswithUni-andBi-DirectionalLinks.IEEETransactionsonVehicularTechnology,44(3):579–585,1995.[32]N.Poojary,S.V.Krishnamurthy,andS.Dao.MediumAccess

ControlinaNetworkofAdHocNodeswithHeterogeneousPowerCapabilities.InProceedingsofIEEEICC,pages872–877,2001.[33]R.Prakash.ARoutingAlgorithmforWirelessAdHocNetworks

withUnidirectionalLinks.ACM/KluwerWirelessNetworks,7(6):617–625,2001.

[34]R.RamanathanandR.Rosales-Hain.TopologyControlofMultihop

WirelessNetworksusingTransmitPowerAdjustment.InProceedingsofIEEEINFOCOM,pages404–413,2000.

[35]S.Ramanathan.AUnifiedFrameworkandAlgorithmforChannel

AssignmentinWirelessNetworks.WirelessNetworks,5(2):81–94,1999.

[36]V.Ramasubramanian,R.Chandra,andD.Mosse.Providinga

BidirectionalAbstractionforUnidirectionalAdHocNetworks.InProceedingsofIEEEINFOCOM,2002.Toappear.

[37]V.RodopluandT.Meng.MinimumEnergyMobileWireless

Networks.IEEEJournalonSelectedAreasinCommunications,SpecialIssueonAdHocNetworks,17(8):1333–1344,Aug1999.[38]P.Sinha,S.V.Krishnamurthy,andS.Dao.ScalableUnidirectional

RoutingwithZoneRoutingProtocol(ZRP)ExtensionsforMobileAd-hocNetworks.InProceedingsofWirelessCommunicationsandNetworkingConference(WCNC),pages1329–1339,2000.

[39]G.Tel.DirectedNetworkProtocols.InProceedingsofInternational

WorkshoponDistributedAlgorithms(WDAG),pages13–29,1987.[40]R.Wattenhofer,L.Li,P.Bahl,andY.Wang.DistributedTopology

ControlforPowerEfficientOperationinMultihopWirelessAdHocNetworks.InProceedingsofIEEEINFOCOM,pages1388–1397,2001.

[41]J.E.Wieselthier,G.D.Nguyen,andA.Ephremides.Onthe

ConstructionofEnergy-EfficientBroadcastandMulticastTreesinWirelessNetworks.InProceedingsofIEEEINFOCOM,pages585–594,2000.

23

1n0.9oitcarf y0.8reviled 0.7tekcaP0.6Basic AODVBlackListing

Hello

0.5

ReversePathSearch

0

5

10

15

20

Max. node speed (m/s)

(a)Packetdeliveryfraction

600Basic AODV500BlackListing

Hello

ReversePathSearch

)sm400( yale300d .gvA2001000

0510

1520

Max. node speed (m/s)

(b)Averagedelay

200

Basic AODVBlackListing

Hello

se150

ReversePathSearch

ruliaf hcra100

es etuoR50

0

05

1015

20

Max. node speed (m/s)

(c)Routesearchfailures

7Basic AODVBlackListing

dHello

a6oReversePathSearch

l gn5ituor4 dezil3amro2N100

5

10

15

20

Max. node speed (m/s)

(d)Routingload

Figure11:Performancewithvaryingmobility.

因篇幅问题不能全部显示,请点此查看更多更全内容