圆周角和圆心角、弧的关系
教学设计思想
本节在探索圆周角和圆心角的关系的过程中,渗透了分类讨论的思想。在探究活动中,学生体会分类讨论点必要性和方法。本节课遵循“以教师为主导,以学生为主体”的教学原则,以“发展学生的思维”为主线。教学过程中,通过设问进行师生之间,学生之间的交流,根据学生反馈的信息,教师对出现的问题及时加以校正。最后通过练习及时反馈学生对知识掌握的情况,通过小结进一步使学生明确本节课的教学目标。
教学目标 知识与技能:
1.能说出圆心角、圆周角的概念;
2.明确圆心角、圆周角的关系,直径所对圆周角的特征,并能灵活应用解决有关问题。
过程与方法:
通过操作、探究,发现圆心角与弦的对等关系,圆心角与圆周角的关系,体验探索过程。
情感态度价值观:
体会从“特殊到一般”的数学思想方法,及在解决问题中体会与他人合作交流的重要性,养成合作学习的习惯。
教学重难点
重点:圆心角和圆心角的性质,圆心角和圆周角的关系 难点:探究圆心角和圆心角相关性质的过程 教学方法
1.采用引导探究法,体现“教为主导,学为主体”的教学原则。 2.学法指导:通过教师的“教”导出学生动脑、动口、动手的“学”,使学生由“学会”向“会学”过渡,力争体现“教是为了不教“的原则。
教学媒体
多媒体 课时安排 2课时 教学过程设计 第一课时
一、创设情境,引入新课
通过上一节的学习我们知道圆既是轴对称图形又是中心对称图形,那么我利用圆的旋转不变性,将⊙O绕圆心O旋转任意角度α后,出现一个角∠,请同学们观察一下,这个角有什么特点?如图 (如有条件可电脑闪动显示图形.)
在学生观察的基础上,由学生说出这个角的特点:顶点在圆心上. 在此基础上,教师给出圆心角的定义,并板书. 顶点在圆心的角叫做圆心角.
再进一步观察,AB是∠所对的弧,连结,弦既是圆心角∠也是AB所对的弦.这节课我们就来研究圆心角与它所对的弧、弦之间的关系.
二、一起探究
1.请同学们自己画一个圆心角∠,再在同一圆中画出与∠相等的另一个圆心角∠,再作出它们所对的弦,。
(1)请大家大胆猜想,∠∠,其余两组量AB与CD,弦与大小关系如何?
学生很容易猜出:AB=CD,.
教师进一步提问:同学们刚才的发现仅仅是感性认识,猜想是否正确,必须进行证明,怎样证明呢?
学生最容易想到的是证全等的方法可以得出,那么怎样证明弧相等呢? 学生思考并回忆弧与弦的关系:在同圆或等圆中,相等的弧所对的弦相等;相等的弦所对的优弧和劣弧分别相等。所以由可得AB=CD。
(2)如果(或AB=CD),那么∠等于∠吗?
学生积极思考,同样利用三角形全等可推理证明∠∠。
2.刚才我们探究的是同一圆中圆心角与弦、弧的关系,下面我们如果画两个相等的圆⊙O1与⊙O2,∠1∠2D,那么与,AB与CD分别相等吗?反过来,如果(或AB=CD),那么∠1B等于∠2D吗?为什么?
学生小组交流,推理证明,老师规范学生的书写格式。 通过探究我们可以知道什么性质?
学生总结,老师补充,板书定理:在同圆等圆中,相等的圆心角所对的弦相等,所对的弧也相等,相等的弦或相等的弧所对的圆心角相等.
三、巩固练习 课本 四、课堂小结
这节课你的收获是什么? 五、作业 课本 六、板书设计
圆心角 定义 一起探究 练习 性质
第二课时
一、类比联想,引入新课
1.显示实际生活中的图形,感受圆周角. 2.电脑显示圆心角,如图1.
OAͼ1B
将圆心角的顶点进行移动.(如图2) 教师边演示角的顶点运动的情况,边讲解:
FCDOAEͼ2B
(1)当角的顶点在圆心时,我们知道这样的角叫圆心角,如∠; (2)角的顶点运动到圆内,如∠; (3)角的顶点运动到圆外,如∠;
(4)当角的顶点运动到圆周时,如∠这样的角叫什么角呢? 学生会马上猜出:圆周角.教师给予鼓励,并引出课题. 3.引导学生探索与讨论.
什么样的角是圆周角呢?鼓励学生尝试自己给圆周角下定义.
估计学生能类比圆心角给圆周角下定义,顶点在圆周上的角叫圆周角. 是不是顶点在圆周上的角就是圆周角呢?带着问题,教师出示图3.
£¨1£©£¨2£©Í¼3£¨3£©
学生通过观察,会发现形成圆周角必须具备两个条件:(1)顶点在圆周上;(2)两边都与圆相交,最后让学生给圆周角下一个准确定义:
顶点在圆周上,两边都与圆相交的角叫圆周角.
教师进一步提问:圆心角定义中为什么没有提到“两边都与圆相交”呢? 学生讨论后得出:凡是顶点在圆心的角,两边一定与圆相交,而顶点在圆周上的角则不然,因此,学习圆周角的概念,一定要注意两边“两边都与圆相交”这一条件.
练习1,判断题:下列命题是否正确?
(1)圆周角的顶点一定在圆上;(2)点在圆上的角是圆周角; (3)圆周角的两边都和圆相交;(4)两边都和圆相交的角是圆周角. 设计意图:通过学生自己去发现圆周角定义,加深学生对概念的理解. 二、做一做
某艺术团到基层进行慰问演出,演出现场为一圆形广场,其中AB为一临时搭建的圆弧形舞台,在圆上的点P和点Q处分别安放一台摄像机。
(1)你认为这两台摄像机相对于舞台AB的张角∠与∠的大小具有什么关系?把你的判断和同学进行交流。
(2)请用量角器量出这两个角的大小,验证你的判断。
(3)请画一个圆,在这个圆上任意截取一段弧AB,并画出AB所对的任3
个圆周角,用量角器量出这些角的大小关系。
学生首先凭直觉猜想两个角相等,然后用测量或其他方法验证猜想的正确性,最后画图进一步验证:同弧所对的任意圆周角都是相等的。
三、观察猜想,寻找规律
1.圆周角和圆心角是圆中不同的角,有着不同的性质.观察图2,∠与∠对着同一条弧,它们之间有关系吗?
提出问题,让学生思考.教师可以引导学生从特例看起.
学生和教师一起画图,如图:图(1)、图(2)中,圆心角∠分别等于多少度?
CcOAOBBA(1)(2)
学生很快答出:∠分别等于180°,90°.
让学生进一步观察,AB所对的圆周角∠又分别等于多少度? 学生通过观察,会得出AB所对的圆周角∠分别为90°,45°. 2.通过特例,你发现了什么?大胆的猜想一下.
学生猜想,得出命题:一条弧所对的圆周角等于它所对的圆心角的一半. 设计意图:圆周角和圆心角联系的桥梁是它们所共同对着的那条弧,在特殊情况下,较易发现它们之间的关系,符合从特殊到一般的认识规律.
四、一起探究
猜想是否正确,还有待证明.教师引导学生结合命题,画出图形,写出已知、求证.
但是,学生画出的图形往往只是一种情况.先分小组交流画出的图形,议一议:所画图形是否相同,如果不同,有何区别?教师可在教室巡视,把学生画出的不同情况的图形拿出来,利用实物投影在全班交流.若三种位置关系都出现,让学生观察、比较,叙述特征,提问:还有没有其它可能?学生议论后,利用电
脑演示同一条弧所对的圆周角的顶点在圆周上运动的过程,加以验证.若只出现两种位置关系,电脑先演示同一条弧所对的圆周角的顶点在圆周上运动的过程,让学生思考:所画图形是否全面?通过自己观察、分析,交流得出同一条弧所对的圆心角和圆周角之间可能出现的不同位置关系.进而得到圆心角的顶点(圆心)在圆周角的“一边上”、“内部”、“外部”三种情况,如图5所示.
COBA£¨1£©A£¨2£©Í¼5COBCOBA£¨3£©
观察以上三个图形,三种情况中哪一种最特殊,最容易证明呢?
经思考学生会发现,从情形(1)入手最容易证明,只要利用“等边对等角”和“三角形的一个外角等于与它不相邻的两个内角的和”就可以证明结论.
再研究情形(2).如果点O在∠的内部时,还能象情形(1)那样证明吗? 学生观察、思考后会回答:不能.
那么我们能否想办法将情形(2)转化成特殊情况呢?
在教师的启发下,学生会发现只要过点C作直径,问题就解决了. 有了情形(2)的经验,对于情形(3):点O在∠的外部时,怎样转化,可完全交给学生自己解决.
最后由学生口述,教师规范板书一种证明过程,其余两种由学生书写,教师作个别指导.
待师生共同完成证明过程后,将“命题”改为“定理”,即“圆周角定理”. 通过此定理的证明,要使学生明确,要不要分不同情况来证明,主要看各种情况的证明方法是否相同,相同者不需分,不相同者必须对各种不同情况逐个加以证明.
设计意图:学生动手实践,再观察,比较,分析,交流,体现了学生的主体作用.计算机辅助教学,突破难点.教师板书,培养学生良好的书写习惯.
练习2:如图
在下列各图中∠а1,∠а2, ∠а3,∠а4.
¦Á¦Á1275¡ãO£¨1£©O120¡ã£¨2£©30¡ãO¦Á3O110¡ã¦Á4£¨4£©£¨3£©
五、小结
利用提问形式,从以下三方面进行小结. (1)本节课所学习的主要内容是什么? (2)本节课涉及的数学思想方法主要有哪些? 电脑屏幕显示下图:
COAB·ÖÀàÌÖÂÛ»¯¹éCCOBAÍêÈ«¹éÄÉ·¨»¯¹éOBAÔ²ÖܽǶ¨Àí
六、作业 课本 七、板书设计
圆周角 定义 性质1 一起探究 练习1 性质2 练习2