99网
您的当前位置:首页63. Unique Paths II

63. Unique Paths II

来源:99网

A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

Note: m and n will be at most 100.

Example 1:

Input:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
Output: 2
Explanation:
There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:

  1. Right -> Right -> Down -> Down
  2. Down -> Down -> Right -> Right
    Accepted
    266,240
    Submissions
    784,147

注意long long

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        if(obstacleGrid.size()==0||obstacleGrid[0][0]==1) return 0;
        
        int m=obstacleGrid.size(), n=obstacleGrid[0].size();
        vector<vector<long long>>dp(m,vector<long long>(n,0)); dp[0][0]=1;
        
        for(int i=1;i<m;i++) 
        {//初始化行
            if(obstacleGrid[i][0]==1) dp[i][0]=0;
            else dp[i][0]=dp[i-1][0];
        }
        for(int i=1;i<n;i++) 
        {//初始化列
            if(obstacleGrid[0][i]==1) dp[0][i]=0;
            else dp[0][i]=dp[0][i-1];
        }
        for(int i=1;i<m;i++)
            for(int j=1;j<n;j++)
            {
                if(obstacleGrid[i][j]==1) dp[i][j]=0;
                else dp[i][j]=dp[i-1][j]+dp[i][j-1];
            }
        return dp[m-1][n-1];
    }
};

因篇幅问题不能全部显示,请点此查看更多更全内容